• Previous Article
    Periodic solutions and multiharmonic expansions for the Westervelt equation
  • EECT Home
  • This Issue
  • Next Article
    Lipschitz stability for an inverse source problem in anisotropic parabolic equations with dynamic boundary conditions
doi: 10.3934/eect.2020100

Existence and uniqueness of mild solutions for quasi-linear fractional integro-differential equations

Department of Applied Mathematics, Imecc-State University of Campinas, 13083-859, Campinas, SP, Brazil

* Corresponding author: vanterler@ime.unicamp.br

Received  May 2019 Revised  August 2020 Published  October 2020

We discuss the existence and uniqueness of mild solutions for a class of quasi-linear fractional integro-differential equations with impulsive conditions via Hausdorff measures of noncompactness and fixed point theory in Banach space. Mild solution controllability is discussed for two particular cases.

Citation: Priscila Santos Ramos, J. Vanterler da C. Sousa, E. Capelas de Oliveira. Existence and uniqueness of mild solutions for quasi-linear fractional integro-differential equations. Evolution Equations & Control Theory, doi: 10.3934/eect.2020100
References:
[1]

R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460-481.  doi: 10.1016/j.cnsns.2016.09.006.  Google Scholar

[2]

R. AlmeidaA. M. C. Brito da CruzN. Martins and M. T. T. Monteiro, An epidemiological MSEIR model described by the Caputo fractional derivative, Inter. J. Dyn. Control, 7 (2019), 776-784.  doi: 10.1007/s40435-018-0492-1.  Google Scholar

[3]

R. Almeida, A. B. Malinowska and Tatiana Odzijewicz, On systems of fractional differential equations with the $\psi$-Caputo derivative and their applications, Math. Meth. Appl. Sci., (2019), 1-16. Google Scholar

[4]

J. M. Ayerbe Toledano, T. Domínguez Benavides and G. López Acedo, Measure of Nonompactness in Metric Fixed Point Theorem, Birkhäuser Verlag, Basel, 1997. doi: 10.1007/978-3-0348-8920-9.  Google Scholar

[5]

D. BahugunaR. Sakthivel and A. Chadha, Asymptotic stability of fractional impulsive neutral stochastic partial integro-differential equations with infinite delay, Stochc. Anal. Appl., 35 (2017), 63-88.  doi: 10.1080/07362994.2016.1249285.  Google Scholar

[6]

J. Banaś and K. Goebel, Measure of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, Marcle Dekker, New York, 1980.  Google Scholar

[7]

J. Banaś and W. G. El-Sayed, Measures of noncompactness and solvability of an integral equation in the class of functions of locally bounded variation, J. Math. Anal. Appl., 167 (1992), 133-151.  doi: 10.1016/0022-247X(92)90241-5.  Google Scholar

[8]

M. Benchohra, S. Litimein and J. J. Nieto, Semilinear fractional differential equations with infinite delay and non-instantaneous impulses, J. Fixed Point Theory Appl., 21 (2019), Paper No. 21, 16 pp. doi: 10.1007/s11784-019-0660-8.  Google Scholar

[9]

A. Boudjerida, D. Seba and G. M. N'Guérékata, Controllability of coupled systems for impulsive $\varphi$-Hilfer fractional integro-differential inclusions., Applicable Anal., (2020), 1-18. Google Scholar

[10]

D. Bothe, Multivalued perturbation of $m$-accretive differential inclusions, Israel J. Math., 108 (1998), 109-138.  doi: 10.1007/BF02783044.  Google Scholar

[11]

L. Byszewski and V. Lakshmikantham, Theorems about the existence and uniqueness of solutions of a nonlocal Cauchy problem in Banach spaces, Applicable Anal., 40 (1990), 11-19.  doi: 10.1080/00036819008839989.  Google Scholar

[12]

D. N. Chalishajar, K. Malar and R. Ilavarasi, Existence and controllability results of impulsive fractional neutral integro-differential equation with sectorial operator and infinite delay, AIP Conference Proceedings, AIP Publishing LLC, 2159 (2019), 030006. doi: 10.1063/1.5127471.  Google Scholar

[13]

J. Dabas and A. Chauhan, Existence and uniqueness of mild solution for an impulsive neutral fractional integro-differential equation with infinite delay, Math. Computer Model., 57 (2013), 754-763.  doi: 10.1016/j.mcm.2012.09.001.  Google Scholar

[14]

A. Debbouche, Fractional evolution integro-differential systems with nonlocal conditions, Adv. Dyn. Syst. Appl., 5 (2010), 49-60.   Google Scholar

[15]

A. Debbouche and D. Baleanu, Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems, Comput. Math. Appl., 62 (2011), 1442-1450.  doi: 10.1016/j.camwa.2011.03.075.  Google Scholar

[16]

K. Diethelm and N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229-248.  doi: 10.1006/jmaa.2000.7194.  Google Scholar

[17]

R. Dhayal, M. Malik, S. Abbas, A. Kumar and R. Sakthivel, Approximation theorems for controllability problem governed by fractional differential equation, Evolution Equ. Control Theory, (2019). doi: 10.3934/eect.2020073.  Google Scholar

[18]

G. Emmanuele, Measures of weak noncompactness and fixed point theorems, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 25 (1981), 353-358.   Google Scholar

[19]

Z. Fan and G. Li, Existence results for semilinear differential equations with nonlocal and impulsive conditions, J. Funct. Anal., 258 (2010), 1709-1727.  doi: 10.1016/j.jfa.2009.10.023.  Google Scholar

[20]

H. Gou and B. Li, Local and global existence of mild solution to impulsive fractional semilinear integro-differential equation with noncompact semigroup, Commun. Nonlinear Sci. Numer. Simul., 42 (2017), 204-214.  doi: 10.1016/j.cnsns.2016.05.021.  Google Scholar

[21]

E. Hernández and D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., 141 (2013), 1641-1649.  doi: 10.1090/S0002-9939-2012-11613-2.  Google Scholar

[22]

L. HuY. Ren and R. Sakthivel, Existence and uniqueness of mild solutions for semilinear integro-differential equations of fractional order with nonlocal initial conditions and delays, Semigroup Forum, 79 (2009), 507-514.  doi: 10.1007/s00233-009-9164-y.  Google Scholar

[23]

S. Ji and G. Li, Existence results for impulsive differential inclusions with nonlocal conditions, Comput. Math. Appl., 62 (2011), 1908-1915.  doi: 10.1016/j.camwa.2011.06.034.  Google Scholar

[24]

R. Joice NirmalaK. Balachandran and J. J. Trujillo, Null controllability of fractional dynamical systems with constrained control, Frac. Calc. Appl. Anal., 20 (2017), 553-565.  doi: 10.1515/fca-2017-0029.  Google Scholar

[25]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland, New York, 2006.  Google Scholar

[26]

V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Analysis: Theory, Meth. Appl., 69 (2008), 2677-2682.  doi: 10.1016/j.na.2007.08.042.  Google Scholar

[27]

Z. LiuJ. Lv and R. Sakthivel, Approximate controllability of fractional functional evolution inclusions with delay in Hilbert spaces, IMA J. Math. Control Infor., 31 (2014), 363-383.  doi: 10.1093/imamci/dnt015.  Google Scholar

[28]

M. Mallika ArjunanV. Kavitha and S. Selvi, Existence results for impulsive differential equations with nonlocal conditions via measures of noncompactness, J. Nonlinear Sci. Appl., 5 (2012), 195-205.  doi: 10.22436/jnsa.005.03.04.  Google Scholar

[29]

B. P. MoghaddamJ. A. Tenreiro Machado and M. L. Morgado, Numerical approach for a class of distributed order time fractional partial differential equations, Appl. Numer. Math., 136 (2019), 152-162.  doi: 10.1016/j.apnum.2018.09.019.  Google Scholar

[30]

G. M. Mophou and G. M. N'Guérékata, Existence of the mild solution for some fractional differential equations with nonlocal conditions, Semigroup Forum, 79 (2009), 315-322.  doi: 10.1007/s00233-008-9117-x.  Google Scholar

[31]

S. Nemati, P. M. Lima and D. F. M. Torres, A numerical approach for solving fractional optimal control problems using modified hat functions, Commun. Nonlinear Sci. Numer. Simul., 78 (2019), 104849, 14pp. doi: 10.1016/j.cnsns.2019.104849.  Google Scholar

[32]

S. K. Ntouyas and P. Ch. Tsamatos, Global existence for semilinear evolution equations with nonlocal conditions, J. Math. Anal. Appl., 210 (1997), 679-687.  doi: 10.1006/jmaa.1997.5425.  Google Scholar

[33]

M. D. OrtigueiraD. Valério and J. T. Machado, Variable order fractional systems, Commun. Nonlinear Sci. Numer. Simul., 71 (2019), 231-243.  doi: 10.1016/j.cnsns.2018.12.003.  Google Scholar

[34]

R. Ponce, Bounded mild solutions to fractional integro-differential equations in Banach spaces, Semigroup Forum, 87 (2013), 377-392.  doi: 10.1007/s00233-013-9474-y.  Google Scholar

[35]

R. SakthivelN. I. Mahmudov and J. J. Nieto, Controllability for a class of fractional-order neutral evolution control systems, Appl. Math. Comput., 218 (2012), 10334-10340.  doi: 10.1016/j.amc.2012.03.093.  Google Scholar

[36]

F. P. Samuel and K. Balachandran, Existence of solutions for quasi-linear impulsive functional integrodifferential equations in Banach spaces, J. Nonlinear Sci. Appl., 7 (2014), 115-125.  doi: 10.22436/jnsa.007.02.05.  Google Scholar

[37]

G. ShenR. SakthivelY. Ren and M. Li, Controllability and stability of fractional stochastic functional systems driven by Rosenblatt process, Collectanea Math., 71 (2020), 63-82.  doi: 10.1007/s13348-019-00248-3.  Google Scholar

[38]

X.-B. Shu and Y. Shi, A study on the mild solution of impulsive fractional evolution equations, Appl. Math. Comput., 273 (2016), 465-476.  doi: 10.1016/j.amc.2015.10.020.  Google Scholar

[39]

G. Sales TeodoroJ. A Tenreiro Machado and E. Capelas de Oliveira, A review of definitions of fractional derivatives and other operators, J. Comput. Phys., 388 (2019), 195-208.  doi: 10.1016/j.jcp.2019.03.008.  Google Scholar

[40]

M. R. Sidi Ammi and D. F. M. Torres, Optimal control of a nonlocal thermistor problem with ABC fractional time derivatives, Comput. Math. Appl., 78 (2019), 1507-1516.  doi: 10.1016/j.camwa.2019.03.043.  Google Scholar

[41]

N. H. TuanE. NaneD. O'Regan and N. D. Phuong, Approximation of mild solutions of a semilinear fractional differential equation with random noise, Proc. Amer. Math. Soc., 148 (2020), 3339-3357.  doi: 10.1090/proc/15029.  Google Scholar

[42]

N. H. TuanA. Debbouche and T. B. Ngoc, Existence and regularity of final value problems for time fractional wave equations, Comput. Math. Appl., 78 (2019), 1396-1414.  doi: 10.1016/j.camwa.2018.11.036.  Google Scholar

[43]

J. Vanterler da C. Sousa and E. Capelas de Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72-91.  doi: 10.1016/j.cnsns.2018.01.005.  Google Scholar

[44]

J. Vanterler da C. Sousa and E. Capelas de Oliveira, Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett., 81 (2018), 50-56.  doi: 10.1016/j.aml.2018.01.016.  Google Scholar

[45]

J. Vanterler da C. SousaK. D. Kucche and E. Capelas de Oliveira, Stability of $\psi$-Hilfer impulsive fractional differential equations, Appl. Math. Lett., 88 (2019), 73-80.  doi: 10.1016/j.aml.2018.08.013.  Google Scholar

[46]

J. Vanterler da C. Sousa and E. Capelas de Oliveira, On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the $\psi$-Hilfer operator, J. Fixed Point Theory Appl., 20 (2018), Paper No. 96, 21 pp. doi: 10.1007/s11784-018-0587-5.  Google Scholar

[47]

J. Vanterler da C. Sousa and E. Capelas de Oliveira, Leibniz type rule: $\psi$-Hilfer fractional operator, Commun. Nonlinear Sci. Numer. Simul., 77 (2019), 305-311.  doi: 10.1016/j.cnsns.2019.05.003.  Google Scholar

[48]

J. Vanterler da C. SousaM. N. N. dos SantosL. A. Magna and E. Capelas de Oliveira, Validation of a fractional model for erythrocyte sedimentation rate, Comput. Appl. Math., 37 (2018), 6903-6919.  doi: 10.1007/s40314-018-0717-0.  Google Scholar

[49]

J. Vanterler da C. Sousa and E. Capelas de Oliveira, On the $\Psi$-fractional integral and applications, Comput. Appl. Math., 38 (2019), Paper No. 4, 22 pp. doi: 10.1007/s40314-019-0774-z.  Google Scholar

[50]

J. Vanterler da C. Sousa, E. Capelas de Oliveira and L. A. Magna, Fractional calculus and the ESR test, AIMS Math., 2 (2017), 692. Google Scholar

[51]

J. Vanterler da C. Sousa, D. S. Oliveira and E. Capelas de Oliveira, A note on the mild solutions of Hilfer impulsive fractional differential equations, arXiv: 1811.09256, (2018). Google Scholar

[52]

J. Vanterler da C. Sousa, D. Ferreira Gomes and E. Capelas de Oliveira, A new class of mild and strong solutions of integro-differential equation of arbitrary order in Banach space, arXiv: 1812.11197, (2018). Google Scholar

[53]

J. Vanterler da C. Sousa, Existence of mild solutions to Hilfer fractional evolution equations in Banach space, arXiv: 1812.02213, (2018). Google Scholar

[54]

J. WangW. Wei and Y. Yang, Fractional nonlocal integrodifferential equations of mixed type with time-varying generating operators and optimal control, Opuscula Math., 30 (2010), 217-234.  doi: 10.7494/OpMath.2010.30.2.217.  Google Scholar

[55]

X.-J. YangF. GaoJ. A. Tenreiro Machado and D. Baleanu, Exact travelling wave solutions for local fractional partial differential equations in mathematical physics, Math. Meth. Engineering. Nonlinear Sys. Compl., 24 (2019), 175-191.   Google Scholar

[56]

Y. Zhang, J. Wang and L. Zhang, Basic Theory of Fractional Differential Equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.  Google Scholar

show all references

References:
[1]

R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460-481.  doi: 10.1016/j.cnsns.2016.09.006.  Google Scholar

[2]

R. AlmeidaA. M. C. Brito da CruzN. Martins and M. T. T. Monteiro, An epidemiological MSEIR model described by the Caputo fractional derivative, Inter. J. Dyn. Control, 7 (2019), 776-784.  doi: 10.1007/s40435-018-0492-1.  Google Scholar

[3]

R. Almeida, A. B. Malinowska and Tatiana Odzijewicz, On systems of fractional differential equations with the $\psi$-Caputo derivative and their applications, Math. Meth. Appl. Sci., (2019), 1-16. Google Scholar

[4]

J. M. Ayerbe Toledano, T. Domínguez Benavides and G. López Acedo, Measure of Nonompactness in Metric Fixed Point Theorem, Birkhäuser Verlag, Basel, 1997. doi: 10.1007/978-3-0348-8920-9.  Google Scholar

[5]

D. BahugunaR. Sakthivel and A. Chadha, Asymptotic stability of fractional impulsive neutral stochastic partial integro-differential equations with infinite delay, Stochc. Anal. Appl., 35 (2017), 63-88.  doi: 10.1080/07362994.2016.1249285.  Google Scholar

[6]

J. Banaś and K. Goebel, Measure of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, Marcle Dekker, New York, 1980.  Google Scholar

[7]

J. Banaś and W. G. El-Sayed, Measures of noncompactness and solvability of an integral equation in the class of functions of locally bounded variation, J. Math. Anal. Appl., 167 (1992), 133-151.  doi: 10.1016/0022-247X(92)90241-5.  Google Scholar

[8]

M. Benchohra, S. Litimein and J. J. Nieto, Semilinear fractional differential equations with infinite delay and non-instantaneous impulses, J. Fixed Point Theory Appl., 21 (2019), Paper No. 21, 16 pp. doi: 10.1007/s11784-019-0660-8.  Google Scholar

[9]

A. Boudjerida, D. Seba and G. M. N'Guérékata, Controllability of coupled systems for impulsive $\varphi$-Hilfer fractional integro-differential inclusions., Applicable Anal., (2020), 1-18. Google Scholar

[10]

D. Bothe, Multivalued perturbation of $m$-accretive differential inclusions, Israel J. Math., 108 (1998), 109-138.  doi: 10.1007/BF02783044.  Google Scholar

[11]

L. Byszewski and V. Lakshmikantham, Theorems about the existence and uniqueness of solutions of a nonlocal Cauchy problem in Banach spaces, Applicable Anal., 40 (1990), 11-19.  doi: 10.1080/00036819008839989.  Google Scholar

[12]

D. N. Chalishajar, K. Malar and R. Ilavarasi, Existence and controllability results of impulsive fractional neutral integro-differential equation with sectorial operator and infinite delay, AIP Conference Proceedings, AIP Publishing LLC, 2159 (2019), 030006. doi: 10.1063/1.5127471.  Google Scholar

[13]

J. Dabas and A. Chauhan, Existence and uniqueness of mild solution for an impulsive neutral fractional integro-differential equation with infinite delay, Math. Computer Model., 57 (2013), 754-763.  doi: 10.1016/j.mcm.2012.09.001.  Google Scholar

[14]

A. Debbouche, Fractional evolution integro-differential systems with nonlocal conditions, Adv. Dyn. Syst. Appl., 5 (2010), 49-60.   Google Scholar

[15]

A. Debbouche and D. Baleanu, Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems, Comput. Math. Appl., 62 (2011), 1442-1450.  doi: 10.1016/j.camwa.2011.03.075.  Google Scholar

[16]

K. Diethelm and N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229-248.  doi: 10.1006/jmaa.2000.7194.  Google Scholar

[17]

R. Dhayal, M. Malik, S. Abbas, A. Kumar and R. Sakthivel, Approximation theorems for controllability problem governed by fractional differential equation, Evolution Equ. Control Theory, (2019). doi: 10.3934/eect.2020073.  Google Scholar

[18]

G. Emmanuele, Measures of weak noncompactness and fixed point theorems, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 25 (1981), 353-358.   Google Scholar

[19]

Z. Fan and G. Li, Existence results for semilinear differential equations with nonlocal and impulsive conditions, J. Funct. Anal., 258 (2010), 1709-1727.  doi: 10.1016/j.jfa.2009.10.023.  Google Scholar

[20]

H. Gou and B. Li, Local and global existence of mild solution to impulsive fractional semilinear integro-differential equation with noncompact semigroup, Commun. Nonlinear Sci. Numer. Simul., 42 (2017), 204-214.  doi: 10.1016/j.cnsns.2016.05.021.  Google Scholar

[21]

E. Hernández and D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., 141 (2013), 1641-1649.  doi: 10.1090/S0002-9939-2012-11613-2.  Google Scholar

[22]

L. HuY. Ren and R. Sakthivel, Existence and uniqueness of mild solutions for semilinear integro-differential equations of fractional order with nonlocal initial conditions and delays, Semigroup Forum, 79 (2009), 507-514.  doi: 10.1007/s00233-009-9164-y.  Google Scholar

[23]

S. Ji and G. Li, Existence results for impulsive differential inclusions with nonlocal conditions, Comput. Math. Appl., 62 (2011), 1908-1915.  doi: 10.1016/j.camwa.2011.06.034.  Google Scholar

[24]

R. Joice NirmalaK. Balachandran and J. J. Trujillo, Null controllability of fractional dynamical systems with constrained control, Frac. Calc. Appl. Anal., 20 (2017), 553-565.  doi: 10.1515/fca-2017-0029.  Google Scholar

[25]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland, New York, 2006.  Google Scholar

[26]

V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Analysis: Theory, Meth. Appl., 69 (2008), 2677-2682.  doi: 10.1016/j.na.2007.08.042.  Google Scholar

[27]

Z. LiuJ. Lv and R. Sakthivel, Approximate controllability of fractional functional evolution inclusions with delay in Hilbert spaces, IMA J. Math. Control Infor., 31 (2014), 363-383.  doi: 10.1093/imamci/dnt015.  Google Scholar

[28]

M. Mallika ArjunanV. Kavitha and S. Selvi, Existence results for impulsive differential equations with nonlocal conditions via measures of noncompactness, J. Nonlinear Sci. Appl., 5 (2012), 195-205.  doi: 10.22436/jnsa.005.03.04.  Google Scholar

[29]

B. P. MoghaddamJ. A. Tenreiro Machado and M. L. Morgado, Numerical approach for a class of distributed order time fractional partial differential equations, Appl. Numer. Math., 136 (2019), 152-162.  doi: 10.1016/j.apnum.2018.09.019.  Google Scholar

[30]

G. M. Mophou and G. M. N'Guérékata, Existence of the mild solution for some fractional differential equations with nonlocal conditions, Semigroup Forum, 79 (2009), 315-322.  doi: 10.1007/s00233-008-9117-x.  Google Scholar

[31]

S. Nemati, P. M. Lima and D. F. M. Torres, A numerical approach for solving fractional optimal control problems using modified hat functions, Commun. Nonlinear Sci. Numer. Simul., 78 (2019), 104849, 14pp. doi: 10.1016/j.cnsns.2019.104849.  Google Scholar

[32]

S. K. Ntouyas and P. Ch. Tsamatos, Global existence for semilinear evolution equations with nonlocal conditions, J. Math. Anal. Appl., 210 (1997), 679-687.  doi: 10.1006/jmaa.1997.5425.  Google Scholar

[33]

M. D. OrtigueiraD. Valério and J. T. Machado, Variable order fractional systems, Commun. Nonlinear Sci. Numer. Simul., 71 (2019), 231-243.  doi: 10.1016/j.cnsns.2018.12.003.  Google Scholar

[34]

R. Ponce, Bounded mild solutions to fractional integro-differential equations in Banach spaces, Semigroup Forum, 87 (2013), 377-392.  doi: 10.1007/s00233-013-9474-y.  Google Scholar

[35]

R. SakthivelN. I. Mahmudov and J. J. Nieto, Controllability for a class of fractional-order neutral evolution control systems, Appl. Math. Comput., 218 (2012), 10334-10340.  doi: 10.1016/j.amc.2012.03.093.  Google Scholar

[36]

F. P. Samuel and K. Balachandran, Existence of solutions for quasi-linear impulsive functional integrodifferential equations in Banach spaces, J. Nonlinear Sci. Appl., 7 (2014), 115-125.  doi: 10.22436/jnsa.007.02.05.  Google Scholar

[37]

G. ShenR. SakthivelY. Ren and M. Li, Controllability and stability of fractional stochastic functional systems driven by Rosenblatt process, Collectanea Math., 71 (2020), 63-82.  doi: 10.1007/s13348-019-00248-3.  Google Scholar

[38]

X.-B. Shu and Y. Shi, A study on the mild solution of impulsive fractional evolution equations, Appl. Math. Comput., 273 (2016), 465-476.  doi: 10.1016/j.amc.2015.10.020.  Google Scholar

[39]

G. Sales TeodoroJ. A Tenreiro Machado and E. Capelas de Oliveira, A review of definitions of fractional derivatives and other operators, J. Comput. Phys., 388 (2019), 195-208.  doi: 10.1016/j.jcp.2019.03.008.  Google Scholar

[40]

M. R. Sidi Ammi and D. F. M. Torres, Optimal control of a nonlocal thermistor problem with ABC fractional time derivatives, Comput. Math. Appl., 78 (2019), 1507-1516.  doi: 10.1016/j.camwa.2019.03.043.  Google Scholar

[41]

N. H. TuanE. NaneD. O'Regan and N. D. Phuong, Approximation of mild solutions of a semilinear fractional differential equation with random noise, Proc. Amer. Math. Soc., 148 (2020), 3339-3357.  doi: 10.1090/proc/15029.  Google Scholar

[42]

N. H. TuanA. Debbouche and T. B. Ngoc, Existence and regularity of final value problems for time fractional wave equations, Comput. Math. Appl., 78 (2019), 1396-1414.  doi: 10.1016/j.camwa.2018.11.036.  Google Scholar

[43]

J. Vanterler da C. Sousa and E. Capelas de Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72-91.  doi: 10.1016/j.cnsns.2018.01.005.  Google Scholar

[44]

J. Vanterler da C. Sousa and E. Capelas de Oliveira, Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett., 81 (2018), 50-56.  doi: 10.1016/j.aml.2018.01.016.  Google Scholar

[45]

J. Vanterler da C. SousaK. D. Kucche and E. Capelas de Oliveira, Stability of $\psi$-Hilfer impulsive fractional differential equations, Appl. Math. Lett., 88 (2019), 73-80.  doi: 10.1016/j.aml.2018.08.013.  Google Scholar

[46]

J. Vanterler da C. Sousa and E. Capelas de Oliveira, On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the $\psi$-Hilfer operator, J. Fixed Point Theory Appl., 20 (2018), Paper No. 96, 21 pp. doi: 10.1007/s11784-018-0587-5.  Google Scholar

[47]

J. Vanterler da C. Sousa and E. Capelas de Oliveira, Leibniz type rule: $\psi$-Hilfer fractional operator, Commun. Nonlinear Sci. Numer. Simul., 77 (2019), 305-311.  doi: 10.1016/j.cnsns.2019.05.003.  Google Scholar

[48]

J. Vanterler da C. SousaM. N. N. dos SantosL. A. Magna and E. Capelas de Oliveira, Validation of a fractional model for erythrocyte sedimentation rate, Comput. Appl. Math., 37 (2018), 6903-6919.  doi: 10.1007/s40314-018-0717-0.  Google Scholar

[49]

J. Vanterler da C. Sousa and E. Capelas de Oliveira, On the $\Psi$-fractional integral and applications, Comput. Appl. Math., 38 (2019), Paper No. 4, 22 pp. doi: 10.1007/s40314-019-0774-z.  Google Scholar

[50]

J. Vanterler da C. Sousa, E. Capelas de Oliveira and L. A. Magna, Fractional calculus and the ESR test, AIMS Math., 2 (2017), 692. Google Scholar

[51]

J. Vanterler da C. Sousa, D. S. Oliveira and E. Capelas de Oliveira, A note on the mild solutions of Hilfer impulsive fractional differential equations, arXiv: 1811.09256, (2018). Google Scholar

[52]

J. Vanterler da C. Sousa, D. Ferreira Gomes and E. Capelas de Oliveira, A new class of mild and strong solutions of integro-differential equation of arbitrary order in Banach space, arXiv: 1812.11197, (2018). Google Scholar

[53]

J. Vanterler da C. Sousa, Existence of mild solutions to Hilfer fractional evolution equations in Banach space, arXiv: 1812.02213, (2018). Google Scholar

[54]

J. WangW. Wei and Y. Yang, Fractional nonlocal integrodifferential equations of mixed type with time-varying generating operators and optimal control, Opuscula Math., 30 (2010), 217-234.  doi: 10.7494/OpMath.2010.30.2.217.  Google Scholar

[55]

X.-J. YangF. GaoJ. A. Tenreiro Machado and D. Baleanu, Exact travelling wave solutions for local fractional partial differential equations in mathematical physics, Math. Meth. Engineering. Nonlinear Sys. Compl., 24 (2019), 175-191.   Google Scholar

[56]

Y. Zhang, J. Wang and L. Zhang, Basic Theory of Fractional Differential Equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.  Google Scholar

[1]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[2]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[3]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[4]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[5]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[6]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[7]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[8]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[9]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[10]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[11]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[12]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[13]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[14]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[15]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[16]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[17]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[18]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[19]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[20]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

2019 Impact Factor: 0.953

Article outline

[Back to Top]