• Previous Article
    Internal feedback stabilization for parabolic systems coupled in zero or first order terms
  • EECT Home
  • This Issue
  • Next Article
    Uniform stability in a vectorial full Von Kármán thermoelastic system with solenoidal dissipation and free boundary conditions
doi: 10.3934/eect.2020102

Non-autonomous 2D Newton-Boussinesq equation with oscillating external forces and its uniform attractor

1. 

College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, 710062, China

2. 

College of Science, Xi'an University of Science and Technology, Xi'an, 710054, China

* Corresponding author: Jianhua Wu

Received  January 2020 Revised  August 2020 Published  November 2020

Fund Project: The first author is supported in part by National Natural Science Foundation of China (Nos. 11601417), Natural Science Basic Research Plan in Shaanxi Province of China (Nos. 2018JM1047, 2019JM-283) and Postdoctoral Fund in Shaanxi Province of China (No. 2016BSHEDZZ112). The second author was supported by the National Natural Science Foundation of China (No. 11771262)

We consider a non-autonomous two-dimensional Newton-Boussinesq equation with singularly oscillating external forces depending on a small parameter $ \varepsilon $. We prove the existence of the uniform attractor $ A^\varepsilon $ when the Prandtl number $ P_r>1 $. Furthermore, under suitable translation-compactness and divergence type condition assumptions on the external forces, we obtain the uniform (with respect to $ \varepsilon $) boundedness of the related uniform attractors $ A^\varepsilon $ as well as the convergence of the attractor $ A^\varepsilon $ to the attractor $ A^0 $ as $ \varepsilon\rightarrow 0^+ $.

Citation: Xueli Song, Jianhua Wu. Non-autonomous 2D Newton-Boussinesq equation with oscillating external forces and its uniform attractor. Evolution Equations & Control Theory, doi: 10.3934/eect.2020102
References:
[1]

C. T. Anh and N. D. Toan, Nonclassical diffusion equations on $\mathbb{R}^N$ with singularly oscillating external forces, Appl. Math. Lett., 38 (2014), 20-26.  doi: 10.1016/j.aml.2014.06.008.  Google Scholar

[2]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Applications, 25, North-Holland Publishing Co., Amsterdam, 1992.  Google Scholar

[3]

V. V. ChepyzhovM. Conti and V. Pata, Averaging of equations of viscoelasticity with singularly oscillating external forces, J. Math. Pures. Appl. (9), 108 (2017), 841-868.  doi: 10.1016/j.matpur.2017.05.007.  Google Scholar

[4]

V. V. ChepyzhovV. Pata and M. I. Vishik, Averaging of 2D Navier-Stokes equations with singularly oscillating forces, Nonlinearity, 22 (2009), 351-370.  doi: 10.1088/0951-7715/22/2/006.  Google Scholar

[5]

V. V. ChepyzhovV. Pata and M. I. Vishik, Averaging of nonautonomous damped wave equations with singularly oscillating external forces, J. Math. Pures Appl. (9), 90 (2008), 469-491.  doi: 10.1016/j.matpur.2008.07.001.  Google Scholar

[6]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, 49, American Mathematical Society, Providence, RI, 2002.  Google Scholar

[7]

V. V. Chepzhov and M. I. Vishik, Non-autonomous 2D Navier-Stokes system with a simple global attractor and some averaging problems, ESAIM Control Optim. Calc. Var., 8 (2002), 467-487.  doi: 10.1051/cocv:2002056.  Google Scholar

[8]

V. V. Chepyzhov and M. I. Vishik, Non-autonomous 2D Navier-Stokes system with singularly oscillating external force and its global attractor, J. Dynam. Differential Equations, 19 (2007), 655-684.  doi: 10.1007/s10884-007-9077-y.  Google Scholar

[9]

V. V. ChepzhovM. I. Vishik and W. L. Wendland, On non-autonomous sine-Gordon type equations with a simple global attractor and some averaging, Discrete Contin. Dyn. Syst., 12 (2005), 27-38.  doi: 10.3934/dcds.2005.12.27.  Google Scholar

[10]

M. Efendiev and S. Zelik, Attractors of the reaction-diffusion systems with rapidly oscillating coefficients and their homogenenization, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 961-989.  doi: 10.1016/S0294-1449(02)00115-4.  Google Scholar

[11]

M. Efendiev and S. Zelik, The regular attractor for the reaction-diffusion systems with a nonlinearity rapidly oscillating in time and its averaging, Adv. Differential Equations, 8 (2003), 673-732.   Google Scholar

[12]

S.-M. FangL.-Y. Jin and B.-L. Guo, Global existence of solutions to the periodic initial value problems for two-dimensional Newton-Boussinesq equations, Appl. Math. Mech. (English Ed.), 31 (2010), 405-414.  doi: 10.1007/s10483-010-0401-9.  Google Scholar

[13]

G. FucciB. Wang and P. Singh, Asymptotic behavior of the Newton-Boussinesq equation in a two-dimensional channel, Nonlinear Anal., 70 (2009), 2000-2013.  doi: 10.1016/j.na.2008.02.098.  Google Scholar

[14]

B. Guo, Nonlinear Galerkin methods for solving two-dimensional Newton-Boussinesq equations, Chinese Ann. Math. Ser. B, 16 (1995), 379-390.   Google Scholar

[15]

B. L. Guo, Spectral method for solving the two-dimensional Newton-Boussinesq equations, Acta Math. Appl. Sinica (English Ser.), 5 (1989), 208-218.  doi: 10.1007/BF02006004.  Google Scholar

[16]

J. K. Hale, Asymptotic behavior of dissipative systems, in Dynamics of Infinite-Dimensional Systems, NATO Adv. Sci. Inst. Ser. F Comput. Systems Sci., 37, Springer, Berlin, 1987,123–128.  Google Scholar

[17]

Y. Hou and K. Li, The uniform attractor for the 2D non-autonomous Navier-Stokes flow in some unbounded domain, Nonlinear Anal., 58 (2004), 609-630.  doi: 10.1016/j.na.2004.02.031.  Google Scholar

[18]

H. Ma and Q. Zhang, Global existence and uniqueness of Yudovich's solutions to the 3D Newton-Boussinesq system, Appl. Anal., 97 (2018), 1814-1827.  doi: 10.1080/00036811.2017.1343463.  Google Scholar

[19]

Y. QinX. Yang and X. Liu, Averaging of 3D Navier-Stokes-Voight equation with singularly oscillating forces, Nonlinear Anal. Real World Appl., 13 (2012), 893-904.  doi: 10.1016/j.nonrwa.2011.08.025.  Google Scholar

[20]

H. QiuY. Du and Z. Yao, A note on the regularity criterion of the two-dimensional Newton-Boussinesq equation, Nonlinear Anal. Real World Appl., 12 (2011), 2012-2015.  doi: 10.1016/j.nonrwa.2010.12.017.  Google Scholar

[21] J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.  doi: 10.1007/978-94-010-0732-0.  Google Scholar
[22]

X.-L. Song and Y.-R. Hou, Attractors for the three-dimensional incompressible Navier-Stokes equations with damping, Discrete Contin. Dyn. Syst., 31 (2011), 239-252.  doi: 10.3934/dcds.2011.31.239.  Google Scholar

[23]

X.-L. Song and Y.-R. Hou, Pullback $D$-attractors for the non-autonomous Newton-Boussinesq equation in two-dimensional bounded domain, Discrete Contin. Dyn. Syst., 32 (2012), 991-1009.  doi: 10.3934/dcds.2012.32.991.  Google Scholar

[24]

X.-L. Song and J.-H. Wu, Existence of global attractors for two-dimensional Newton-Boussinesq equation, Nonlinear Anal., 157 (2017), 1-19.  doi: 10.1016/j.na.2017.03.002.  Google Scholar

[25]

C. SunD. Cao and J. Duan, Non-autonomous wave dynamics with memory-asymptotic regularity and uniform attractor, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 743-761.  doi: 10.3934/dcdsb.2008.9.743.  Google Scholar

[26]

C. SunD. Cao and J. Duan, Uniform attractors for nonautonomous wave equations with nonlinear damping, SIAM J. Appl. Dyn. Syst., 6 (2007), 293-318.  doi: 10.1137/060663805.  Google Scholar

[27]

T. Tachim Medjo, A non-autonomous 3D Lagrangian averaged Navier-Stokes-$\alpha$ Model with oscillating external force and its global attractor, Commun. Pure Appl. Anal., 10 (2011), 415-433.  doi: 10.3934/cpaa.2011.10.415.  Google Scholar

[28]

T. Tachim Medjo, A non-autonomous two-phase flow model with oscillating external force and its global attractor, Nonlinear Anal., 75 (2012), 226-243.  doi: 10.1016/j.na.2011.08.024.  Google Scholar

[29]

T. Tachim Medjo, Averaging of a 3D primitive equations with oscillating external forces, Appl. Anal., 92 (2013), 869-900.  doi: 10.1080/00036811.2011.640628.  Google Scholar

[30]

T. Tachim Medjo, Non-autonomous 3D primitive equations with oscillating external force and its global attractor, Discrete Contin. Dyn. Syst., 32 (2012), 265-291.  doi: 10.3934/dcds.2012.32.265.  Google Scholar

[31]

T. Tachim Medjo, Non-autonomous planetary 3D geostrophic equations with oscillating external force and its global attractor, Nonlinear Anal. Real World Appl., 12 (2011), 1437-1452.  doi: 10.1016/j.nonrwa.2010.10.004.  Google Scholar

[32]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[33]

M. I. Vishik and V. V. Chepyzhov, Attractors of dissipative hyperbolic equations with singularly oscillating external forces, Math. Notes, 79 (2006), 483-504.  doi: 10.1007/s11006-006-0054-2.  Google Scholar

[34]

B. Wang and R. Jones, Asymptotic behavior of a class of non-autonomous degenerate parabolic equations, Nonlinear Anal., 72 (2010), 3887-3902.  doi: 10.1016/j.na.2010.01.026.  Google Scholar

[35]

R. Wang and Y. Li, Asymptotic autonomy of kernel sections for Newton-Boussinesq equations on unbounded zonary domains, Dyn. Partial Differ. Equ., 16 (2019), 295-316.  doi: 10.4310/DPDE.2019.v16.n3.a4.  Google Scholar

[36]

C. Zhao and Y. Li, $H^2$-compact attractor for a non-Newtonian system in two-dimensional unbounded domains, Nonlinear Anal., 56 (2004), 1091-1103.  doi: 10.1016/j.na.2003.11.006.  Google Scholar

[37]

C.-K. ZhongM.-H. Yang and C.-Y. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential Equations, 223 (2006), 367-399.  doi: 10.1016/j.jde.2005.06.008.  Google Scholar

show all references

References:
[1]

C. T. Anh and N. D. Toan, Nonclassical diffusion equations on $\mathbb{R}^N$ with singularly oscillating external forces, Appl. Math. Lett., 38 (2014), 20-26.  doi: 10.1016/j.aml.2014.06.008.  Google Scholar

[2]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Applications, 25, North-Holland Publishing Co., Amsterdam, 1992.  Google Scholar

[3]

V. V. ChepyzhovM. Conti and V. Pata, Averaging of equations of viscoelasticity with singularly oscillating external forces, J. Math. Pures. Appl. (9), 108 (2017), 841-868.  doi: 10.1016/j.matpur.2017.05.007.  Google Scholar

[4]

V. V. ChepyzhovV. Pata and M. I. Vishik, Averaging of 2D Navier-Stokes equations with singularly oscillating forces, Nonlinearity, 22 (2009), 351-370.  doi: 10.1088/0951-7715/22/2/006.  Google Scholar

[5]

V. V. ChepyzhovV. Pata and M. I. Vishik, Averaging of nonautonomous damped wave equations with singularly oscillating external forces, J. Math. Pures Appl. (9), 90 (2008), 469-491.  doi: 10.1016/j.matpur.2008.07.001.  Google Scholar

[6]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, 49, American Mathematical Society, Providence, RI, 2002.  Google Scholar

[7]

V. V. Chepzhov and M. I. Vishik, Non-autonomous 2D Navier-Stokes system with a simple global attractor and some averaging problems, ESAIM Control Optim. Calc. Var., 8 (2002), 467-487.  doi: 10.1051/cocv:2002056.  Google Scholar

[8]

V. V. Chepyzhov and M. I. Vishik, Non-autonomous 2D Navier-Stokes system with singularly oscillating external force and its global attractor, J. Dynam. Differential Equations, 19 (2007), 655-684.  doi: 10.1007/s10884-007-9077-y.  Google Scholar

[9]

V. V. ChepzhovM. I. Vishik and W. L. Wendland, On non-autonomous sine-Gordon type equations with a simple global attractor and some averaging, Discrete Contin. Dyn. Syst., 12 (2005), 27-38.  doi: 10.3934/dcds.2005.12.27.  Google Scholar

[10]

M. Efendiev and S. Zelik, Attractors of the reaction-diffusion systems with rapidly oscillating coefficients and their homogenenization, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 961-989.  doi: 10.1016/S0294-1449(02)00115-4.  Google Scholar

[11]

M. Efendiev and S. Zelik, The regular attractor for the reaction-diffusion systems with a nonlinearity rapidly oscillating in time and its averaging, Adv. Differential Equations, 8 (2003), 673-732.   Google Scholar

[12]

S.-M. FangL.-Y. Jin and B.-L. Guo, Global existence of solutions to the periodic initial value problems for two-dimensional Newton-Boussinesq equations, Appl. Math. Mech. (English Ed.), 31 (2010), 405-414.  doi: 10.1007/s10483-010-0401-9.  Google Scholar

[13]

G. FucciB. Wang and P. Singh, Asymptotic behavior of the Newton-Boussinesq equation in a two-dimensional channel, Nonlinear Anal., 70 (2009), 2000-2013.  doi: 10.1016/j.na.2008.02.098.  Google Scholar

[14]

B. Guo, Nonlinear Galerkin methods for solving two-dimensional Newton-Boussinesq equations, Chinese Ann. Math. Ser. B, 16 (1995), 379-390.   Google Scholar

[15]

B. L. Guo, Spectral method for solving the two-dimensional Newton-Boussinesq equations, Acta Math. Appl. Sinica (English Ser.), 5 (1989), 208-218.  doi: 10.1007/BF02006004.  Google Scholar

[16]

J. K. Hale, Asymptotic behavior of dissipative systems, in Dynamics of Infinite-Dimensional Systems, NATO Adv. Sci. Inst. Ser. F Comput. Systems Sci., 37, Springer, Berlin, 1987,123–128.  Google Scholar

[17]

Y. Hou and K. Li, The uniform attractor for the 2D non-autonomous Navier-Stokes flow in some unbounded domain, Nonlinear Anal., 58 (2004), 609-630.  doi: 10.1016/j.na.2004.02.031.  Google Scholar

[18]

H. Ma and Q. Zhang, Global existence and uniqueness of Yudovich's solutions to the 3D Newton-Boussinesq system, Appl. Anal., 97 (2018), 1814-1827.  doi: 10.1080/00036811.2017.1343463.  Google Scholar

[19]

Y. QinX. Yang and X. Liu, Averaging of 3D Navier-Stokes-Voight equation with singularly oscillating forces, Nonlinear Anal. Real World Appl., 13 (2012), 893-904.  doi: 10.1016/j.nonrwa.2011.08.025.  Google Scholar

[20]

H. QiuY. Du and Z. Yao, A note on the regularity criterion of the two-dimensional Newton-Boussinesq equation, Nonlinear Anal. Real World Appl., 12 (2011), 2012-2015.  doi: 10.1016/j.nonrwa.2010.12.017.  Google Scholar

[21] J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.  doi: 10.1007/978-94-010-0732-0.  Google Scholar
[22]

X.-L. Song and Y.-R. Hou, Attractors for the three-dimensional incompressible Navier-Stokes equations with damping, Discrete Contin. Dyn. Syst., 31 (2011), 239-252.  doi: 10.3934/dcds.2011.31.239.  Google Scholar

[23]

X.-L. Song and Y.-R. Hou, Pullback $D$-attractors for the non-autonomous Newton-Boussinesq equation in two-dimensional bounded domain, Discrete Contin. Dyn. Syst., 32 (2012), 991-1009.  doi: 10.3934/dcds.2012.32.991.  Google Scholar

[24]

X.-L. Song and J.-H. Wu, Existence of global attractors for two-dimensional Newton-Boussinesq equation, Nonlinear Anal., 157 (2017), 1-19.  doi: 10.1016/j.na.2017.03.002.  Google Scholar

[25]

C. SunD. Cao and J. Duan, Non-autonomous wave dynamics with memory-asymptotic regularity and uniform attractor, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 743-761.  doi: 10.3934/dcdsb.2008.9.743.  Google Scholar

[26]

C. SunD. Cao and J. Duan, Uniform attractors for nonautonomous wave equations with nonlinear damping, SIAM J. Appl. Dyn. Syst., 6 (2007), 293-318.  doi: 10.1137/060663805.  Google Scholar

[27]

T. Tachim Medjo, A non-autonomous 3D Lagrangian averaged Navier-Stokes-$\alpha$ Model with oscillating external force and its global attractor, Commun. Pure Appl. Anal., 10 (2011), 415-433.  doi: 10.3934/cpaa.2011.10.415.  Google Scholar

[28]

T. Tachim Medjo, A non-autonomous two-phase flow model with oscillating external force and its global attractor, Nonlinear Anal., 75 (2012), 226-243.  doi: 10.1016/j.na.2011.08.024.  Google Scholar

[29]

T. Tachim Medjo, Averaging of a 3D primitive equations with oscillating external forces, Appl. Anal., 92 (2013), 869-900.  doi: 10.1080/00036811.2011.640628.  Google Scholar

[30]

T. Tachim Medjo, Non-autonomous 3D primitive equations with oscillating external force and its global attractor, Discrete Contin. Dyn. Syst., 32 (2012), 265-291.  doi: 10.3934/dcds.2012.32.265.  Google Scholar

[31]

T. Tachim Medjo, Non-autonomous planetary 3D geostrophic equations with oscillating external force and its global attractor, Nonlinear Anal. Real World Appl., 12 (2011), 1437-1452.  doi: 10.1016/j.nonrwa.2010.10.004.  Google Scholar

[32]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[33]

M. I. Vishik and V. V. Chepyzhov, Attractors of dissipative hyperbolic equations with singularly oscillating external forces, Math. Notes, 79 (2006), 483-504.  doi: 10.1007/s11006-006-0054-2.  Google Scholar

[34]

B. Wang and R. Jones, Asymptotic behavior of a class of non-autonomous degenerate parabolic equations, Nonlinear Anal., 72 (2010), 3887-3902.  doi: 10.1016/j.na.2010.01.026.  Google Scholar

[35]

R. Wang and Y. Li, Asymptotic autonomy of kernel sections for Newton-Boussinesq equations on unbounded zonary domains, Dyn. Partial Differ. Equ., 16 (2019), 295-316.  doi: 10.4310/DPDE.2019.v16.n3.a4.  Google Scholar

[36]

C. Zhao and Y. Li, $H^2$-compact attractor for a non-Newtonian system in two-dimensional unbounded domains, Nonlinear Anal., 56 (2004), 1091-1103.  doi: 10.1016/j.na.2003.11.006.  Google Scholar

[37]

C.-K. ZhongM.-H. Yang and C.-Y. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential Equations, 223 (2006), 367-399.  doi: 10.1016/j.jde.2005.06.008.  Google Scholar

[1]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[2]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[3]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[4]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[5]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[6]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[7]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[8]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[9]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[10]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[11]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[12]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[13]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[14]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[15]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[16]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[17]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[18]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[19]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[20]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (16)
  • HTML views (46)
  • Cited by (0)

Other articles
by authors

[Back to Top]