doi: 10.3934/eect.2020102

Non-autonomous 2D Newton-Boussinesq equation with oscillating external forces and its uniform attractor

1. 

College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, 710062, China

2. 

College of Science, Xi'an University of Science and Technology, Xi'an, 710054, China

* Corresponding author: Jianhua Wu

Received  January 2020 Revised  August 2020 Early access  November 2020

Fund Project: The first author is supported in part by National Natural Science Foundation of China (Nos. 11601417), Natural Science Basic Research Plan in Shaanxi Province of China (Nos. 2018JM1047, 2019JM-283) and Postdoctoral Fund in Shaanxi Province of China (No. 2016BSHEDZZ112). The second author was supported by the National Natural Science Foundation of China (No. 11771262)

We consider a non-autonomous two-dimensional Newton-Boussinesq equation with singularly oscillating external forces depending on a small parameter $ \varepsilon $. We prove the existence of the uniform attractor $ A^\varepsilon $ when the Prandtl number $ P_r>1 $. Furthermore, under suitable translation-compactness and divergence type condition assumptions on the external forces, we obtain the uniform (with respect to $ \varepsilon $) boundedness of the related uniform attractors $ A^\varepsilon $ as well as the convergence of the attractor $ A^\varepsilon $ to the attractor $ A^0 $ as $ \varepsilon\rightarrow 0^+ $.

Citation: Xueli Song, Jianhua Wu. Non-autonomous 2D Newton-Boussinesq equation with oscillating external forces and its uniform attractor. Evolution Equations & Control Theory, doi: 10.3934/eect.2020102
References:
[1]

C. T. Anh and N. D. Toan, Nonclassical diffusion equations on $\mathbb{R}^N$ with singularly oscillating external forces, Appl. Math. Lett., 38 (2014), 20-26.  doi: 10.1016/j.aml.2014.06.008.  Google Scholar

[2]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Applications, 25, North-Holland Publishing Co., Amsterdam, 1992.  Google Scholar

[3]

V. V. ChepyzhovM. Conti and V. Pata, Averaging of equations of viscoelasticity with singularly oscillating external forces, J. Math. Pures. Appl. (9), 108 (2017), 841-868.  doi: 10.1016/j.matpur.2017.05.007.  Google Scholar

[4]

V. V. ChepyzhovV. Pata and M. I. Vishik, Averaging of 2D Navier-Stokes equations with singularly oscillating forces, Nonlinearity, 22 (2009), 351-370.  doi: 10.1088/0951-7715/22/2/006.  Google Scholar

[5]

V. V. ChepyzhovV. Pata and M. I. Vishik, Averaging of nonautonomous damped wave equations with singularly oscillating external forces, J. Math. Pures Appl. (9), 90 (2008), 469-491.  doi: 10.1016/j.matpur.2008.07.001.  Google Scholar

[6]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, 49, American Mathematical Society, Providence, RI, 2002.  Google Scholar

[7]

V. V. Chepzhov and M. I. Vishik, Non-autonomous 2D Navier-Stokes system with a simple global attractor and some averaging problems, ESAIM Control Optim. Calc. Var., 8 (2002), 467-487.  doi: 10.1051/cocv:2002056.  Google Scholar

[8]

V. V. Chepyzhov and M. I. Vishik, Non-autonomous 2D Navier-Stokes system with singularly oscillating external force and its global attractor, J. Dynam. Differential Equations, 19 (2007), 655-684.  doi: 10.1007/s10884-007-9077-y.  Google Scholar

[9]

V. V. ChepzhovM. I. Vishik and W. L. Wendland, On non-autonomous sine-Gordon type equations with a simple global attractor and some averaging, Discrete Contin. Dyn. Syst., 12 (2005), 27-38.  doi: 10.3934/dcds.2005.12.27.  Google Scholar

[10]

M. Efendiev and S. Zelik, Attractors of the reaction-diffusion systems with rapidly oscillating coefficients and their homogenenization, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 961-989.  doi: 10.1016/S0294-1449(02)00115-4.  Google Scholar

[11]

M. Efendiev and S. Zelik, The regular attractor for the reaction-diffusion systems with a nonlinearity rapidly oscillating in time and its averaging, Adv. Differential Equations, 8 (2003), 673-732.   Google Scholar

[12]

S.-M. FangL.-Y. Jin and B.-L. Guo, Global existence of solutions to the periodic initial value problems for two-dimensional Newton-Boussinesq equations, Appl. Math. Mech. (English Ed.), 31 (2010), 405-414.  doi: 10.1007/s10483-010-0401-9.  Google Scholar

[13]

G. FucciB. Wang and P. Singh, Asymptotic behavior of the Newton-Boussinesq equation in a two-dimensional channel, Nonlinear Anal., 70 (2009), 2000-2013.  doi: 10.1016/j.na.2008.02.098.  Google Scholar

[14]

B. Guo, Nonlinear Galerkin methods for solving two-dimensional Newton-Boussinesq equations, Chinese Ann. Math. Ser. B, 16 (1995), 379-390.   Google Scholar

[15]

B. L. Guo, Spectral method for solving the two-dimensional Newton-Boussinesq equations, Acta Math. Appl. Sinica (English Ser.), 5 (1989), 208-218.  doi: 10.1007/BF02006004.  Google Scholar

[16]

J. K. Hale, Asymptotic behavior of dissipative systems, in Dynamics of Infinite-Dimensional Systems, NATO Adv. Sci. Inst. Ser. F Comput. Systems Sci., 37, Springer, Berlin, 1987,123–128.  Google Scholar

[17]

Y. Hou and K. Li, The uniform attractor for the 2D non-autonomous Navier-Stokes flow in some unbounded domain, Nonlinear Anal., 58 (2004), 609-630.  doi: 10.1016/j.na.2004.02.031.  Google Scholar

[18]

H. Ma and Q. Zhang, Global existence and uniqueness of Yudovich's solutions to the 3D Newton-Boussinesq system, Appl. Anal., 97 (2018), 1814-1827.  doi: 10.1080/00036811.2017.1343463.  Google Scholar

[19]

Y. QinX. Yang and X. Liu, Averaging of 3D Navier-Stokes-Voight equation with singularly oscillating forces, Nonlinear Anal. Real World Appl., 13 (2012), 893-904.  doi: 10.1016/j.nonrwa.2011.08.025.  Google Scholar

[20]

H. QiuY. Du and Z. Yao, A note on the regularity criterion of the two-dimensional Newton-Boussinesq equation, Nonlinear Anal. Real World Appl., 12 (2011), 2012-2015.  doi: 10.1016/j.nonrwa.2010.12.017.  Google Scholar

[21] J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.  doi: 10.1007/978-94-010-0732-0.  Google Scholar
[22]

X.-L. Song and Y.-R. Hou, Attractors for the three-dimensional incompressible Navier-Stokes equations with damping, Discrete Contin. Dyn. Syst., 31 (2011), 239-252.  doi: 10.3934/dcds.2011.31.239.  Google Scholar

[23]

X.-L. Song and Y.-R. Hou, Pullback $D$-attractors for the non-autonomous Newton-Boussinesq equation in two-dimensional bounded domain, Discrete Contin. Dyn. Syst., 32 (2012), 991-1009.  doi: 10.3934/dcds.2012.32.991.  Google Scholar

[24]

X.-L. Song and J.-H. Wu, Existence of global attractors for two-dimensional Newton-Boussinesq equation, Nonlinear Anal., 157 (2017), 1-19.  doi: 10.1016/j.na.2017.03.002.  Google Scholar

[25]

C. SunD. Cao and J. Duan, Non-autonomous wave dynamics with memory-asymptotic regularity and uniform attractor, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 743-761.  doi: 10.3934/dcdsb.2008.9.743.  Google Scholar

[26]

C. SunD. Cao and J. Duan, Uniform attractors for nonautonomous wave equations with nonlinear damping, SIAM J. Appl. Dyn. Syst., 6 (2007), 293-318.  doi: 10.1137/060663805.  Google Scholar

[27]

T. Tachim Medjo, A non-autonomous 3D Lagrangian averaged Navier-Stokes-$\alpha$ Model with oscillating external force and its global attractor, Commun. Pure Appl. Anal., 10 (2011), 415-433.  doi: 10.3934/cpaa.2011.10.415.  Google Scholar

[28]

T. Tachim Medjo, A non-autonomous two-phase flow model with oscillating external force and its global attractor, Nonlinear Anal., 75 (2012), 226-243.  doi: 10.1016/j.na.2011.08.024.  Google Scholar

[29]

T. Tachim Medjo, Averaging of a 3D primitive equations with oscillating external forces, Appl. Anal., 92 (2013), 869-900.  doi: 10.1080/00036811.2011.640628.  Google Scholar

[30]

T. Tachim Medjo, Non-autonomous 3D primitive equations with oscillating external force and its global attractor, Discrete Contin. Dyn. Syst., 32 (2012), 265-291.  doi: 10.3934/dcds.2012.32.265.  Google Scholar

[31]

T. Tachim Medjo, Non-autonomous planetary 3D geostrophic equations with oscillating external force and its global attractor, Nonlinear Anal. Real World Appl., 12 (2011), 1437-1452.  doi: 10.1016/j.nonrwa.2010.10.004.  Google Scholar

[32]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[33]

M. I. Vishik and V. V. Chepyzhov, Attractors of dissipative hyperbolic equations with singularly oscillating external forces, Math. Notes, 79 (2006), 483-504.  doi: 10.1007/s11006-006-0054-2.  Google Scholar

[34]

B. Wang and R. Jones, Asymptotic behavior of a class of non-autonomous degenerate parabolic equations, Nonlinear Anal., 72 (2010), 3887-3902.  doi: 10.1016/j.na.2010.01.026.  Google Scholar

[35]

R. Wang and Y. Li, Asymptotic autonomy of kernel sections for Newton-Boussinesq equations on unbounded zonary domains, Dyn. Partial Differ. Equ., 16 (2019), 295-316.  doi: 10.4310/DPDE.2019.v16.n3.a4.  Google Scholar

[36]

C. Zhao and Y. Li, $H^2$-compact attractor for a non-Newtonian system in two-dimensional unbounded domains, Nonlinear Anal., 56 (2004), 1091-1103.  doi: 10.1016/j.na.2003.11.006.  Google Scholar

[37]

C.-K. ZhongM.-H. Yang and C.-Y. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential Equations, 223 (2006), 367-399.  doi: 10.1016/j.jde.2005.06.008.  Google Scholar

show all references

References:
[1]

C. T. Anh and N. D. Toan, Nonclassical diffusion equations on $\mathbb{R}^N$ with singularly oscillating external forces, Appl. Math. Lett., 38 (2014), 20-26.  doi: 10.1016/j.aml.2014.06.008.  Google Scholar

[2]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Applications, 25, North-Holland Publishing Co., Amsterdam, 1992.  Google Scholar

[3]

V. V. ChepyzhovM. Conti and V. Pata, Averaging of equations of viscoelasticity with singularly oscillating external forces, J. Math. Pures. Appl. (9), 108 (2017), 841-868.  doi: 10.1016/j.matpur.2017.05.007.  Google Scholar

[4]

V. V. ChepyzhovV. Pata and M. I. Vishik, Averaging of 2D Navier-Stokes equations with singularly oscillating forces, Nonlinearity, 22 (2009), 351-370.  doi: 10.1088/0951-7715/22/2/006.  Google Scholar

[5]

V. V. ChepyzhovV. Pata and M. I. Vishik, Averaging of nonautonomous damped wave equations with singularly oscillating external forces, J. Math. Pures Appl. (9), 90 (2008), 469-491.  doi: 10.1016/j.matpur.2008.07.001.  Google Scholar

[6]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, 49, American Mathematical Society, Providence, RI, 2002.  Google Scholar

[7]

V. V. Chepzhov and M. I. Vishik, Non-autonomous 2D Navier-Stokes system with a simple global attractor and some averaging problems, ESAIM Control Optim. Calc. Var., 8 (2002), 467-487.  doi: 10.1051/cocv:2002056.  Google Scholar

[8]

V. V. Chepyzhov and M. I. Vishik, Non-autonomous 2D Navier-Stokes system with singularly oscillating external force and its global attractor, J. Dynam. Differential Equations, 19 (2007), 655-684.  doi: 10.1007/s10884-007-9077-y.  Google Scholar

[9]

V. V. ChepzhovM. I. Vishik and W. L. Wendland, On non-autonomous sine-Gordon type equations with a simple global attractor and some averaging, Discrete Contin. Dyn. Syst., 12 (2005), 27-38.  doi: 10.3934/dcds.2005.12.27.  Google Scholar

[10]

M. Efendiev and S. Zelik, Attractors of the reaction-diffusion systems with rapidly oscillating coefficients and their homogenenization, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 961-989.  doi: 10.1016/S0294-1449(02)00115-4.  Google Scholar

[11]

M. Efendiev and S. Zelik, The regular attractor for the reaction-diffusion systems with a nonlinearity rapidly oscillating in time and its averaging, Adv. Differential Equations, 8 (2003), 673-732.   Google Scholar

[12]

S.-M. FangL.-Y. Jin and B.-L. Guo, Global existence of solutions to the periodic initial value problems for two-dimensional Newton-Boussinesq equations, Appl. Math. Mech. (English Ed.), 31 (2010), 405-414.  doi: 10.1007/s10483-010-0401-9.  Google Scholar

[13]

G. FucciB. Wang and P. Singh, Asymptotic behavior of the Newton-Boussinesq equation in a two-dimensional channel, Nonlinear Anal., 70 (2009), 2000-2013.  doi: 10.1016/j.na.2008.02.098.  Google Scholar

[14]

B. Guo, Nonlinear Galerkin methods for solving two-dimensional Newton-Boussinesq equations, Chinese Ann. Math. Ser. B, 16 (1995), 379-390.   Google Scholar

[15]

B. L. Guo, Spectral method for solving the two-dimensional Newton-Boussinesq equations, Acta Math. Appl. Sinica (English Ser.), 5 (1989), 208-218.  doi: 10.1007/BF02006004.  Google Scholar

[16]

J. K. Hale, Asymptotic behavior of dissipative systems, in Dynamics of Infinite-Dimensional Systems, NATO Adv. Sci. Inst. Ser. F Comput. Systems Sci., 37, Springer, Berlin, 1987,123–128.  Google Scholar

[17]

Y. Hou and K. Li, The uniform attractor for the 2D non-autonomous Navier-Stokes flow in some unbounded domain, Nonlinear Anal., 58 (2004), 609-630.  doi: 10.1016/j.na.2004.02.031.  Google Scholar

[18]

H. Ma and Q. Zhang, Global existence and uniqueness of Yudovich's solutions to the 3D Newton-Boussinesq system, Appl. Anal., 97 (2018), 1814-1827.  doi: 10.1080/00036811.2017.1343463.  Google Scholar

[19]

Y. QinX. Yang and X. Liu, Averaging of 3D Navier-Stokes-Voight equation with singularly oscillating forces, Nonlinear Anal. Real World Appl., 13 (2012), 893-904.  doi: 10.1016/j.nonrwa.2011.08.025.  Google Scholar

[20]

H. QiuY. Du and Z. Yao, A note on the regularity criterion of the two-dimensional Newton-Boussinesq equation, Nonlinear Anal. Real World Appl., 12 (2011), 2012-2015.  doi: 10.1016/j.nonrwa.2010.12.017.  Google Scholar

[21] J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.  doi: 10.1007/978-94-010-0732-0.  Google Scholar
[22]

X.-L. Song and Y.-R. Hou, Attractors for the three-dimensional incompressible Navier-Stokes equations with damping, Discrete Contin. Dyn. Syst., 31 (2011), 239-252.  doi: 10.3934/dcds.2011.31.239.  Google Scholar

[23]

X.-L. Song and Y.-R. Hou, Pullback $D$-attractors for the non-autonomous Newton-Boussinesq equation in two-dimensional bounded domain, Discrete Contin. Dyn. Syst., 32 (2012), 991-1009.  doi: 10.3934/dcds.2012.32.991.  Google Scholar

[24]

X.-L. Song and J.-H. Wu, Existence of global attractors for two-dimensional Newton-Boussinesq equation, Nonlinear Anal., 157 (2017), 1-19.  doi: 10.1016/j.na.2017.03.002.  Google Scholar

[25]

C. SunD. Cao and J. Duan, Non-autonomous wave dynamics with memory-asymptotic regularity and uniform attractor, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 743-761.  doi: 10.3934/dcdsb.2008.9.743.  Google Scholar

[26]

C. SunD. Cao and J. Duan, Uniform attractors for nonautonomous wave equations with nonlinear damping, SIAM J. Appl. Dyn. Syst., 6 (2007), 293-318.  doi: 10.1137/060663805.  Google Scholar

[27]

T. Tachim Medjo, A non-autonomous 3D Lagrangian averaged Navier-Stokes-$\alpha$ Model with oscillating external force and its global attractor, Commun. Pure Appl. Anal., 10 (2011), 415-433.  doi: 10.3934/cpaa.2011.10.415.  Google Scholar

[28]

T. Tachim Medjo, A non-autonomous two-phase flow model with oscillating external force and its global attractor, Nonlinear Anal., 75 (2012), 226-243.  doi: 10.1016/j.na.2011.08.024.  Google Scholar

[29]

T. Tachim Medjo, Averaging of a 3D primitive equations with oscillating external forces, Appl. Anal., 92 (2013), 869-900.  doi: 10.1080/00036811.2011.640628.  Google Scholar

[30]

T. Tachim Medjo, Non-autonomous 3D primitive equations with oscillating external force and its global attractor, Discrete Contin. Dyn. Syst., 32 (2012), 265-291.  doi: 10.3934/dcds.2012.32.265.  Google Scholar

[31]

T. Tachim Medjo, Non-autonomous planetary 3D geostrophic equations with oscillating external force and its global attractor, Nonlinear Anal. Real World Appl., 12 (2011), 1437-1452.  doi: 10.1016/j.nonrwa.2010.10.004.  Google Scholar

[32]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[33]

M. I. Vishik and V. V. Chepyzhov, Attractors of dissipative hyperbolic equations with singularly oscillating external forces, Math. Notes, 79 (2006), 483-504.  doi: 10.1007/s11006-006-0054-2.  Google Scholar

[34]

B. Wang and R. Jones, Asymptotic behavior of a class of non-autonomous degenerate parabolic equations, Nonlinear Anal., 72 (2010), 3887-3902.  doi: 10.1016/j.na.2010.01.026.  Google Scholar

[35]

R. Wang and Y. Li, Asymptotic autonomy of kernel sections for Newton-Boussinesq equations on unbounded zonary domains, Dyn. Partial Differ. Equ., 16 (2019), 295-316.  doi: 10.4310/DPDE.2019.v16.n3.a4.  Google Scholar

[36]

C. Zhao and Y. Li, $H^2$-compact attractor for a non-Newtonian system in two-dimensional unbounded domains, Nonlinear Anal., 56 (2004), 1091-1103.  doi: 10.1016/j.na.2003.11.006.  Google Scholar

[37]

C.-K. ZhongM.-H. Yang and C.-Y. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential Equations, 223 (2006), 367-399.  doi: 10.1016/j.jde.2005.06.008.  Google Scholar

[1]

Cedric Galusinski, Serguei Zelik. Uniform Gevrey regularity for the attractor of a damped wave equation. Conference Publications, 2003, 2003 (Special) : 305-312. doi: 10.3934/proc.2003.2003.305

[2]

Xue-Li Song, Yan-Ren Hou. Pullback $\mathcal{D}$-attractors for the non-autonomous Newton-Boussinesq equation in two-dimensional bounded domain. Discrete & Continuous Dynamical Systems, 2012, 32 (3) : 991-1009. doi: 10.3934/dcds.2012.32.991

[3]

Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639

[4]

Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743

[5]

Xiaolin Jia, Caidi Zhao, Juan Cao. Uniform attractor of the non-autonomous discrete Selkov model. Discrete & Continuous Dynamical Systems, 2014, 34 (1) : 229-248. doi: 10.3934/dcds.2014.34.229

[6]

T. Tachim Medjo. Non-autonomous 3D primitive equations with oscillating external force and its global attractor. Discrete & Continuous Dynamical Systems, 2012, 32 (1) : 265-291. doi: 10.3934/dcds.2012.32.265

[7]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[8]

Zhengguang Guo, Sadek Gala. Regularity criterion of the Newton-Boussinesq equations in $R^3$. Communications on Pure & Applied Analysis, 2012, 11 (2) : 443-451. doi: 10.3934/cpaa.2012.11.443

[9]

Zhigang Wu, Wenjun Wang. Uniform stability of the Boltzmann equation with an external force near vacuum. Communications on Pure & Applied Analysis, 2015, 14 (3) : 811-823. doi: 10.3934/cpaa.2015.14.811

[10]

Pierre Fabrie, Cedric Galusinski, A. Miranville, Sergey Zelik. Uniform exponential attractors for a singularly perturbed damped wave equation. Discrete & Continuous Dynamical Systems, 2004, 10 (1&2) : 211-238. doi: 10.3934/dcds.2004.10.211

[11]

T. Tachim Medjo. A non-autonomous 3D Lagrangian averaged Navier-Stokes-$\alpha$ model with oscillating external force and its global attractor. Communications on Pure & Applied Analysis, 2011, 10 (2) : 415-433. doi: 10.3934/cpaa.2011.10.415

[12]

Yangrong Li, Lianbing She, Jinyan Yin. Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1535-1557. doi: 10.3934/dcdsb.2018058

[13]

Yejuan Wang, Peter E. Kloeden. The uniform attractor of a multi-valued process generated by reaction-diffusion delay equations on an unbounded domain. Discrete & Continuous Dynamical Systems, 2014, 34 (10) : 4343-4370. doi: 10.3934/dcds.2014.34.4343

[14]

Messoud Efendiev, Etsushi Nakaguchi, Wolfgang L. Wendland. Uniform estimate of dimension of the global attractor for a semi-discretized chemotaxis-growth system. Conference Publications, 2007, 2007 (Special) : 334-343. doi: 10.3934/proc.2007.2007.334

[15]

Shaofei Wu, Mingqing Wang, Maozhu Jin, Yuntao Zou, Lijun Song. Uniform $L^1$ stability of the inelastic Boltzmann equation with large external force for hard potentials. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1005-1013. doi: 10.3934/dcdss.2019068

[16]

Karl Kunisch, Markus Müller. Uniform convergence of the POD method and applications to optimal control. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 4477-4501. doi: 10.3934/dcds.2015.35.4477

[17]

Liu Liu. Uniform spectral convergence of the stochastic Galerkin method for the linear semiconductor Boltzmann equation with random inputs and diffusive scaling. Kinetic & Related Models, 2018, 11 (5) : 1139-1156. doi: 10.3934/krm.2018044

[18]

Sergey Zelik. Strong uniform attractors for non-autonomous dissipative PDEs with non translation-compact external forces. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 781-810. doi: 10.3934/dcdsb.2015.20.781

[19]

Jeremy Levesley, Xinping Sun, Fahd Jarad, Alexander Kushpel. Interpolation of exponential-type functions on a uniform grid by shifts of a basis function. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2399-2416. doi: 10.3934/dcdss.2020403

[20]

Changming Song, Hong Li, Jina Li. Initial boundary value problem for the singularly perturbed Boussinesq-type equation. Conference Publications, 2013, 2013 (special) : 709-717. doi: 10.3934/proc.2013.2013.709

2020 Impact Factor: 1.081

Article outline

[Back to Top]