doi: 10.3934/eect.2020107

Optimal control problems for a neutral integro-differential system with infinite delay

School of Mathematical Sciences, Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, P. R. China

* Corresponding author: Xianlong Fu

Received  May 2020 Revised  September 2020 Published  December 2020

Fund Project: This work is supported by NSF of China (Nos. 11671142 and 11771075), Science and Technology Commission of Shanghai Municipality (STCSM) (grant No. 18dz2271000)

This work devotes to the study on problems of optimal control and time optimal control for a neutral integro-differential evolution system with infinite delay. The main technique is the theory of resolvent operators for linear neutral integro-differential evolution systems constructed recently in literature. We first establish the existence and uniqueness of mild solutions and discuss the compactness of the solution operator for the considered control system. Then, we investigate the existence of optimal controls for the both cases of bounded and unbounded admissible control sets under some assumptions. Meanwhile, the existence of time optimal control to a target set is also considered and obtained by limit arguments. An example is given at last to illustrate the applications of the obtained results.

Citation: Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, doi: 10.3934/eect.2020107
References:
[1]

N. U. Ahmed, Partially observed stochastic evolution equations on Banach spaces and their optimal Lipschitz feedback control law, SIAM J. Control Optim., 57 (2019), 3101-3117.  doi: 10.1137/19M1243282.  Google Scholar

[2]

P. Balasubramaniam and P. Tamilalagan, The solvability and optimal controls for impulsive fractional stochastic integro-differential equations via resolvent operators, J. Optim. Theory Appl., 174 (2017), 139-155.  doi: 10.1007/s10957-016-0865-6.  Google Scholar

[3]

C. D'ApiceM. P. D'ArienzoP. I. Kogut and R. Manzo, On boundary optimal control problem for an arterial system: Existence of feasible solutions, J. Evol. Equ., 18 (2018), 1745-1786.  doi: 10.1007/s00028-018-0460-4.  Google Scholar

[4]

M. A. DialloK. Ezzinbi and A. Sène, Optimal control problem for some integrodifferential equations in Banach spaces, Optim. Control Appl. Methods., 39 (2018), 563-574.  doi: 10.1002/oca.2359.  Google Scholar

[5]

M. A. DiopT. Caraballo and A. A. Ndiaye, Exponential behavior of solutions to stochastic integrodifferential equations with distributed delays, Stoch. Anal. Appl., 33 (2015), 399-412.  doi: 10.1080/07362994.2014.1000070.  Google Scholar

[6]

J. P. C. Dos Santos, Existence results for a partial neutral integro-differential equation with state-dependent delay, Electr. J. Qual. Theory Diff. Equ., 29 (2010), 1-12.  doi: 10.14232/ejqtde.2010.1.29.  Google Scholar

[7]

J. P. C. Dos SantosH. Henríquez and E. Hernández, Existence results for neutral integrodifferential equations with unbounded delay, J. Integral Equ. Appl., 23 (2011), 289-330.  doi: 10.1216/JIE-2011-23-2-289.  Google Scholar

[8]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, New York, 2000.  Google Scholar

[9]

R. C. Grimmer, Resolvent operator for integral equations in a Banach space, Trans. Amer. Math. Soc., 273 (1982), 333-349.  doi: 10.1090/S0002-9947-1982-0664046-4.  Google Scholar

[10]

R. C. Grimmer and F. Kappel, Series expansions of volterra integrodifferential equations in Banach space, SIAM J. Math. Anal., 15 (1984), 595-604.  doi: 10.1137/0515045.  Google Scholar

[11]

R. C. Grimmer and A. J. Pritchard, Analytic resolvent operators for integral equations in a Banach space, J. Diff. Equ., 50 (1983), 234-259.  doi: 10.1016/0022-0396(83)90076-1.  Google Scholar

[12]

J. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funk. Ekvac., 21 (1978), 11-41.   Google Scholar

[13]

A. HarratJ. J. Nieto and A. Debbouche, Solvability and optimal controls of impulsive Hilfer fractional delay evolution inclusions with Clarke subdifferential, J. Comput. Appl. Math., 344 (2018), 725-737.  doi: 10.1016/j.cam.2018.05.031.  Google Scholar

[14]

H. R. Henríquez and J. P. C. Dos Santos, Differentiability of solutions of abstract neutral integro-differential equations, J. Integral Equ. Appl., 25 (2013), 47-77.  doi: 10.1216/JIE-2013-25-1-47.  Google Scholar

[15]

E. Hernández and D. O'Regan, On a new class of abstract neutral integro-differential equations and applications, Acta. Appl. Math., 149 (2017), 125-137.  doi: 10.1007/s10440-016-0090-1.  Google Scholar

[16]

Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay, Springer, 1991. doi: 10.1007/BFb0084432.  Google Scholar

[17]

K. Jeet and N. Sukavanam, Approximate controllability of nonlocal and impulsive neutral integro-differential equations using the resolvent operator theory and an approximating technique, Appl. Math. Comput., 364 (2020), 124690, 15pp. doi: 10.1016/j.amc.2019.124690.  Google Scholar

[18]

J.-M. Jeong and H.-J. Hwang, Optimal control problems for semilinear retarded functional differential equations, J. Optim. Theory Appl., 167 (2015), 49-67.  doi: 10.1007/s10957-015-0726-8.  Google Scholar

[19]

J.-M. Jeong and S.-J. Son, Time optimal control of semilinear control systems involving time delays, J. Optim. Theory Appl., 165 (2015), 793-811.  doi: 10.1007/s10957-014-0639-y.  Google Scholar

[20]

Y. Jiang and N. Huang, Solvability and optimal controls of fractional delay evolution inclusions with Clarke subdifferential, Math. Methods Appl. Sci., 40 (2017), 3026-3039.  doi: 10.1002/mma.4218.  Google Scholar

[21]

V. Keyantuo and C. Lizama, Hölder continuous solutions for integro-differential equations and maximal regularity, J. Diff. Equ., 230 (2006), 634-660.  doi: 10.1016/j.jde.2006.07.018.  Google Scholar

[22]

S. Kumar, Mild solution and fractional optimal control of semilinear system with fixed delay, J. Optim. Theory Appl., 174 (2017), 108-121.  doi: 10.1007/s10957-015-0828-3.  Google Scholar

[23]

T. LevajkovićH. Mena and A. Tuffaha, The stochastic linear quadratic optimal control problem in Hilbert spaces: A chaos expansion approach, Evol. Equ. Control Theory., 5 (2016), 105-134.  doi: 10.3934/eect.2016.5.105.  Google Scholar

[24]

X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkh$\ddot{a}$user, Boston, 1995. doi: 10.1007/978-1-4612-4260-4.  Google Scholar

[25]

J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, New York-Berlin, 1971.  Google Scholar

[26]

Q. Meng and Y. Shen, Optimal control for stochastic delay evolution equations, Appl. Math. Optim., 74 (2016), 53-89.  doi: 10.1007/s00245-015-9308-2.  Google Scholar

[27]

R. K. Miller, An integro-differential equation for rigid heat conductors with memory, J. Math. Anal. Appl., 66 (1978), 313-332.  doi: 10.1016/0022-247X(78)90234-2.  Google Scholar

[28]

F. Z. Mokkedem and X. Fu, Optimal control problems for a semilinear evolution system with infinite delay, Appl. Math. Optim., 79 (2019), 41-67.  doi: 10.1007/s00245-017-9420-6.  Google Scholar

[29]

B. S. MordukhovichD. Wang and L. Wang, Optimal control of delay-differential inclusions with functional endpoint constraints in infinite dimensions, Nonl. Anal., 71 (2009), 2740-2749.  doi: 10.1016/j.na.2009.06.022.  Google Scholar

[30]

S. Nakagiri, Optimal control of linear retarded systems in Banach spaces, J. Math. Anal. Appl., 120 (1986), 169-210.  doi: 10.1016/0022-247X(86)90210-6.  Google Scholar

[31]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007%2F978-1-4612-5561-1.  Google Scholar

[32]

B. Radhakrishnan and K. Balachandran, Controllability of neutral evolution integrodifferential systems with state dependent delay, J. Optim. Theory Appl., 153 (2012), 85-97.  doi: 10.1007/s10957-011-9934-z.  Google Scholar

[33]

C. RavichandranN. Valliammal and J. J. Nieto, New results on exact controllability of a class of fractional neutral integro-differential systems with state-dependent delay in Banach spaces, J. Franklin Inst., 356 (2019), 1535-1565.  doi: 10.1016/j.jfranklin.2018.12.001.  Google Scholar

[34]

R. SakthivelQ. H. Choi and S. M. Anthoni, Controllability of nonlinear neutral evolution integrodifferential systems, J. Math. Anal. Appl., 275 (2002), 402-417.  doi: 10.1016/S0022-247X(02)00375-X.  Google Scholar

[35]

D. Sforza, Existence in the large for a semilinear integrodifferential equation with infinite delay, J. Diff. Equ., 120 (1995), 289-303.  doi: 10.1006/jdeq.1995.1113.  Google Scholar

[36]

M. TucsnakJ. Valein and C. Wu, Finite dimensional approximations for a class of infinite dimensional time optimal control problems, Int. J. Control., 92 (2019), 132-144.  doi: 10.1080/00207179.2016.1228122.  Google Scholar

[37]

V. Vijayakumar, Approximate controllability results for abstract neutral integro-differential inclusions with infinite delay in Hilbert spaces, IMA J. Math. Control Inf., 35 (2018), 297-314.  doi: 10.1093/imamci/dnw049.  Google Scholar

[38]

J. WangY. Zhou and M. Medved, On the solvability and optimal controls of fractional integrodifferential evolution systems with infinite delay, J. Optim. Theory Appl., 152 (2012), 31-50.  doi: 10.1007/s10957-011-9892-5.  Google Scholar

[39]

Z. Yan and F. Lu, Existence of an optimal control for fractional stochastic partial neutral integro-differential equations with infinite delay, J. Nonl. Science Appl., 8 (2015), 557-577.  doi: 10.22436/jnsa.008.05.10.  Google Scholar

[40]

Z. Yan and F. Lu, The optimal control of a new class of impulsive stochastic neutral evolution integro-differential equations with infinite delay, Int. J. Control., 89 (2016), 1592-1612.  doi: 10.1080/00207179.2016.1140229.  Google Scholar

show all references

References:
[1]

N. U. Ahmed, Partially observed stochastic evolution equations on Banach spaces and their optimal Lipschitz feedback control law, SIAM J. Control Optim., 57 (2019), 3101-3117.  doi: 10.1137/19M1243282.  Google Scholar

[2]

P. Balasubramaniam and P. Tamilalagan, The solvability and optimal controls for impulsive fractional stochastic integro-differential equations via resolvent operators, J. Optim. Theory Appl., 174 (2017), 139-155.  doi: 10.1007/s10957-016-0865-6.  Google Scholar

[3]

C. D'ApiceM. P. D'ArienzoP. I. Kogut and R. Manzo, On boundary optimal control problem for an arterial system: Existence of feasible solutions, J. Evol. Equ., 18 (2018), 1745-1786.  doi: 10.1007/s00028-018-0460-4.  Google Scholar

[4]

M. A. DialloK. Ezzinbi and A. Sène, Optimal control problem for some integrodifferential equations in Banach spaces, Optim. Control Appl. Methods., 39 (2018), 563-574.  doi: 10.1002/oca.2359.  Google Scholar

[5]

M. A. DiopT. Caraballo and A. A. Ndiaye, Exponential behavior of solutions to stochastic integrodifferential equations with distributed delays, Stoch. Anal. Appl., 33 (2015), 399-412.  doi: 10.1080/07362994.2014.1000070.  Google Scholar

[6]

J. P. C. Dos Santos, Existence results for a partial neutral integro-differential equation with state-dependent delay, Electr. J. Qual. Theory Diff. Equ., 29 (2010), 1-12.  doi: 10.14232/ejqtde.2010.1.29.  Google Scholar

[7]

J. P. C. Dos SantosH. Henríquez and E. Hernández, Existence results for neutral integrodifferential equations with unbounded delay, J. Integral Equ. Appl., 23 (2011), 289-330.  doi: 10.1216/JIE-2011-23-2-289.  Google Scholar

[8]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, New York, 2000.  Google Scholar

[9]

R. C. Grimmer, Resolvent operator for integral equations in a Banach space, Trans. Amer. Math. Soc., 273 (1982), 333-349.  doi: 10.1090/S0002-9947-1982-0664046-4.  Google Scholar

[10]

R. C. Grimmer and F. Kappel, Series expansions of volterra integrodifferential equations in Banach space, SIAM J. Math. Anal., 15 (1984), 595-604.  doi: 10.1137/0515045.  Google Scholar

[11]

R. C. Grimmer and A. J. Pritchard, Analytic resolvent operators for integral equations in a Banach space, J. Diff. Equ., 50 (1983), 234-259.  doi: 10.1016/0022-0396(83)90076-1.  Google Scholar

[12]

J. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funk. Ekvac., 21 (1978), 11-41.   Google Scholar

[13]

A. HarratJ. J. Nieto and A. Debbouche, Solvability and optimal controls of impulsive Hilfer fractional delay evolution inclusions with Clarke subdifferential, J. Comput. Appl. Math., 344 (2018), 725-737.  doi: 10.1016/j.cam.2018.05.031.  Google Scholar

[14]

H. R. Henríquez and J. P. C. Dos Santos, Differentiability of solutions of abstract neutral integro-differential equations, J. Integral Equ. Appl., 25 (2013), 47-77.  doi: 10.1216/JIE-2013-25-1-47.  Google Scholar

[15]

E. Hernández and D. O'Regan, On a new class of abstract neutral integro-differential equations and applications, Acta. Appl. Math., 149 (2017), 125-137.  doi: 10.1007/s10440-016-0090-1.  Google Scholar

[16]

Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay, Springer, 1991. doi: 10.1007/BFb0084432.  Google Scholar

[17]

K. Jeet and N. Sukavanam, Approximate controllability of nonlocal and impulsive neutral integro-differential equations using the resolvent operator theory and an approximating technique, Appl. Math. Comput., 364 (2020), 124690, 15pp. doi: 10.1016/j.amc.2019.124690.  Google Scholar

[18]

J.-M. Jeong and H.-J. Hwang, Optimal control problems for semilinear retarded functional differential equations, J. Optim. Theory Appl., 167 (2015), 49-67.  doi: 10.1007/s10957-015-0726-8.  Google Scholar

[19]

J.-M. Jeong and S.-J. Son, Time optimal control of semilinear control systems involving time delays, J. Optim. Theory Appl., 165 (2015), 793-811.  doi: 10.1007/s10957-014-0639-y.  Google Scholar

[20]

Y. Jiang and N. Huang, Solvability and optimal controls of fractional delay evolution inclusions with Clarke subdifferential, Math. Methods Appl. Sci., 40 (2017), 3026-3039.  doi: 10.1002/mma.4218.  Google Scholar

[21]

V. Keyantuo and C. Lizama, Hölder continuous solutions for integro-differential equations and maximal regularity, J. Diff. Equ., 230 (2006), 634-660.  doi: 10.1016/j.jde.2006.07.018.  Google Scholar

[22]

S. Kumar, Mild solution and fractional optimal control of semilinear system with fixed delay, J. Optim. Theory Appl., 174 (2017), 108-121.  doi: 10.1007/s10957-015-0828-3.  Google Scholar

[23]

T. LevajkovićH. Mena and A. Tuffaha, The stochastic linear quadratic optimal control problem in Hilbert spaces: A chaos expansion approach, Evol. Equ. Control Theory., 5 (2016), 105-134.  doi: 10.3934/eect.2016.5.105.  Google Scholar

[24]

X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkh$\ddot{a}$user, Boston, 1995. doi: 10.1007/978-1-4612-4260-4.  Google Scholar

[25]

J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, New York-Berlin, 1971.  Google Scholar

[26]

Q. Meng and Y. Shen, Optimal control for stochastic delay evolution equations, Appl. Math. Optim., 74 (2016), 53-89.  doi: 10.1007/s00245-015-9308-2.  Google Scholar

[27]

R. K. Miller, An integro-differential equation for rigid heat conductors with memory, J. Math. Anal. Appl., 66 (1978), 313-332.  doi: 10.1016/0022-247X(78)90234-2.  Google Scholar

[28]

F. Z. Mokkedem and X. Fu, Optimal control problems for a semilinear evolution system with infinite delay, Appl. Math. Optim., 79 (2019), 41-67.  doi: 10.1007/s00245-017-9420-6.  Google Scholar

[29]

B. S. MordukhovichD. Wang and L. Wang, Optimal control of delay-differential inclusions with functional endpoint constraints in infinite dimensions, Nonl. Anal., 71 (2009), 2740-2749.  doi: 10.1016/j.na.2009.06.022.  Google Scholar

[30]

S. Nakagiri, Optimal control of linear retarded systems in Banach spaces, J. Math. Anal. Appl., 120 (1986), 169-210.  doi: 10.1016/0022-247X(86)90210-6.  Google Scholar

[31]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007%2F978-1-4612-5561-1.  Google Scholar

[32]

B. Radhakrishnan and K. Balachandran, Controllability of neutral evolution integrodifferential systems with state dependent delay, J. Optim. Theory Appl., 153 (2012), 85-97.  doi: 10.1007/s10957-011-9934-z.  Google Scholar

[33]

C. RavichandranN. Valliammal and J. J. Nieto, New results on exact controllability of a class of fractional neutral integro-differential systems with state-dependent delay in Banach spaces, J. Franklin Inst., 356 (2019), 1535-1565.  doi: 10.1016/j.jfranklin.2018.12.001.  Google Scholar

[34]

R. SakthivelQ. H. Choi and S. M. Anthoni, Controllability of nonlinear neutral evolution integrodifferential systems, J. Math. Anal. Appl., 275 (2002), 402-417.  doi: 10.1016/S0022-247X(02)00375-X.  Google Scholar

[35]

D. Sforza, Existence in the large for a semilinear integrodifferential equation with infinite delay, J. Diff. Equ., 120 (1995), 289-303.  doi: 10.1006/jdeq.1995.1113.  Google Scholar

[36]

M. TucsnakJ. Valein and C. Wu, Finite dimensional approximations for a class of infinite dimensional time optimal control problems, Int. J. Control., 92 (2019), 132-144.  doi: 10.1080/00207179.2016.1228122.  Google Scholar

[37]

V. Vijayakumar, Approximate controllability results for abstract neutral integro-differential inclusions with infinite delay in Hilbert spaces, IMA J. Math. Control Inf., 35 (2018), 297-314.  doi: 10.1093/imamci/dnw049.  Google Scholar

[38]

J. WangY. Zhou and M. Medved, On the solvability and optimal controls of fractional integrodifferential evolution systems with infinite delay, J. Optim. Theory Appl., 152 (2012), 31-50.  doi: 10.1007/s10957-011-9892-5.  Google Scholar

[39]

Z. Yan and F. Lu, Existence of an optimal control for fractional stochastic partial neutral integro-differential equations with infinite delay, J. Nonl. Science Appl., 8 (2015), 557-577.  doi: 10.22436/jnsa.008.05.10.  Google Scholar

[40]

Z. Yan and F. Lu, The optimal control of a new class of impulsive stochastic neutral evolution integro-differential equations with infinite delay, Int. J. Control., 89 (2016), 1592-1612.  doi: 10.1080/00207179.2016.1140229.  Google Scholar

[1]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[2]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[3]

Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051

[4]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[5]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[6]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[7]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[8]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[9]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[10]

John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044

[11]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[12]

Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122

[13]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[14]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[15]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[16]

Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251

[17]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[18]

Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028

[19]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[20]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (19)
  • HTML views (67)
  • Cited by (0)

Other articles
by authors

[Back to Top]