
-
Previous Article
Stability and stabilization for the three-dimensional Navier-Stokes-Voigt equations with unbounded variable delay
- EECT Home
- This Issue
-
Next Article
Analysis of nonlinear fractional diffusion equations with a Riemann-liouville derivative
Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems
1. | Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria |
2. | Department of Mathematics and Computer Science, University of the Philippines Baguio, Governor Pack Road, Baguio, 2600 Philippines |
We consider a hyperbolic system of partial differential equations on a bounded interval coupled with ordinary differential equations on both ends. The evolution is governed by linear balance laws, which we treat with semigroup and time-space methods. Our goal is to establish the exponential stability in the natural state space by utilizing the stability with respect to the first-order energy of the system. Derivation of a priori estimates plays a crucial role in obtaining energy and dissipation functionals. The theory is then applied to specific physical models.
References:
[1] |
G. Bastin and J.-M. Coron, Stability and Boundary Stabilization of 1-D Hyperbolic Systems, volume 88 of Progress in Nonlinear Differential Equations and Their Applications., Birkhäuser Basel, 2016.
doi: 10.1007/978-3-319-32062-5. |
[2] |
J. T. Beale,
Spectral properties of an acoustic boundary condition, Indiana U. Math. J., 25 (1976), 895-917.
doi: 10.1512/iumj.1976.25.25071. |
[3] |
R. Borsche, R. M. Colombo and M. Garavello,
Mixed systems: ODEs - balance laws, J. Differ. Equations, 252 (2012), 2311-2338.
doi: 10.1016/j.jde.2011.08.051. |
[4] |
A. Borzi and G. Propst,
Numerical investigation of the liebau phenomenon, Z. Angew. Math. Phys., 54 (2003), 1050-1072.
doi: 10.1007/s00033-003-1108-x. |
[5] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, , Springer, New York, 2010. |
[6] |
S. Čanić and E. H. Kim,
Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels, Math Method Applied Sci., 26 (2003), 1161-1186.
doi: 10.1002/mma.407. |
[7] |
R. Courant and D. Hilbert, Methods of Mathematical Physics, II: Partial Differential Equations, Wiley Online Library, 1962. |
[8] |
A. Curcio, M. E. Clark, M. Zhao and W. Ruan,
A hyperbolic system of equations of blood flow in an arterial network, SIAM J. Applied Math., 64 (2004), 637-667.
doi: 10.1137/S0036139902415294. |
[9] |
N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory, Interscience Publishers, Inc., New York, 1958. |
[10] |
K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, New York, 2000. |
[11] |
M. Á. Fernández, V. Milisic and A. Quarteroni,
Analysis of a geometrical multiscale blood flow model based on the coupling of odes and hyperbolic pdes, Multiscale Model. Sim., 4 (2005), 215-236.
doi: 10.1137/030602010. |
[12] |
P. R. Garabedian, Partial Differential Equations, AMS Chelsea Publishing, 1964. |
[13] |
O. Heaviside, Electromagnetic induction and its propagation, The Electrician, 14 (1885), 178-180. Google Scholar |
[14] |
K. Ito and G. Propst,
Legendre-Tau-Padé approximations to the one-dimensional wave equation with boundary oscillators, Numer. Func. Anal. Opt., 19 (1998), 57-70.
doi: 10.1080/01630569808816814. |
[15] |
M. Miklavčič, Applied Functional Analysis and Partial Differential Equations, World Scientific Publishing Co., 1998. Google Scholar |
[16] |
P. M. Morse and K. U. Ingard, Theoretical Acoustics, McGraw-Hill, New York, 1968. Google Scholar |
[17] |
J. C. Oostveen, R. F. Curtain and K. Ito,
An approximation theory for strongly stabilizing solutions to the operator LQ Riccati equation, SIAM J. Control Optim., 38 (2000), 1909-1937.
doi: 10.1137/S0363012998339691. |
[18] |
J. T. Ottesen,
Valveless pumping in a fluid-filled closed elastic tube-system: one-dimensional theory with experimental validation, J. Math. Biol., 46 (2003), 309-332.
doi: 10.1007/s00285-002-0179-1. |
[19] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, volume 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[20] |
G. Peralta and G. Propst,
Stability and boundary controllability of a linearized model of flow in an elastic tube, ESAIM: Control Optim. Calc. Var., 21 (2015), 583-601.
doi: 10.1051/cocv/2014039. |
[21] |
C. Prieur and J. J. Winkin,
Boundary feedback control of linear hyperbolic systems: Application to Saint-Venant-Exner equations, Automatica, 89 (2018), 44-51.
doi: 10.1016/j.automatica.2017.11.028. |
[22] |
H. Rath and I. Teipel, Der fördereffekt in ventillosen, elastischen leitungen, Z. Angew. Math. Phys., 29 (1978), 123-133. Google Scholar |
[23] |
W. Ruan,
A coupled system of ODEs and quasilinear hyperbolic PDEs arising in a multiscale blood flow model, J. Math. Anal. Appl., 343 (2008), 778-798.
doi: 10.1016/j.jmaa.2008.01.064. |
[24] |
W. Ruan, M. E. Clark, M. Zhao and A. Curcio,
Global solution to a hyperbolic problem arising in the modeling of blood flow in circulatory systems, J. Math. Anal. Appl., 331 (2007), 1068-1092.
doi: 10.1016/j.jmaa.2006.09.034. |
[25] |
D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Review, 20 (1978), 639–739.
doi: 10.1137/1020095. |
[26] |
M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Basel, 2009.
doi: 10.1007/978-3-7643-8994-9. |
[27] |
K. Yosida, Functional Analysis, Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin Heidelberg, 1980. |
show all references
References:
[1] |
G. Bastin and J.-M. Coron, Stability and Boundary Stabilization of 1-D Hyperbolic Systems, volume 88 of Progress in Nonlinear Differential Equations and Their Applications., Birkhäuser Basel, 2016.
doi: 10.1007/978-3-319-32062-5. |
[2] |
J. T. Beale,
Spectral properties of an acoustic boundary condition, Indiana U. Math. J., 25 (1976), 895-917.
doi: 10.1512/iumj.1976.25.25071. |
[3] |
R. Borsche, R. M. Colombo and M. Garavello,
Mixed systems: ODEs - balance laws, J. Differ. Equations, 252 (2012), 2311-2338.
doi: 10.1016/j.jde.2011.08.051. |
[4] |
A. Borzi and G. Propst,
Numerical investigation of the liebau phenomenon, Z. Angew. Math. Phys., 54 (2003), 1050-1072.
doi: 10.1007/s00033-003-1108-x. |
[5] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, , Springer, New York, 2010. |
[6] |
S. Čanić and E. H. Kim,
Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels, Math Method Applied Sci., 26 (2003), 1161-1186.
doi: 10.1002/mma.407. |
[7] |
R. Courant and D. Hilbert, Methods of Mathematical Physics, II: Partial Differential Equations, Wiley Online Library, 1962. |
[8] |
A. Curcio, M. E. Clark, M. Zhao and W. Ruan,
A hyperbolic system of equations of blood flow in an arterial network, SIAM J. Applied Math., 64 (2004), 637-667.
doi: 10.1137/S0036139902415294. |
[9] |
N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory, Interscience Publishers, Inc., New York, 1958. |
[10] |
K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, New York, 2000. |
[11] |
M. Á. Fernández, V. Milisic and A. Quarteroni,
Analysis of a geometrical multiscale blood flow model based on the coupling of odes and hyperbolic pdes, Multiscale Model. Sim., 4 (2005), 215-236.
doi: 10.1137/030602010. |
[12] |
P. R. Garabedian, Partial Differential Equations, AMS Chelsea Publishing, 1964. |
[13] |
O. Heaviside, Electromagnetic induction and its propagation, The Electrician, 14 (1885), 178-180. Google Scholar |
[14] |
K. Ito and G. Propst,
Legendre-Tau-Padé approximations to the one-dimensional wave equation with boundary oscillators, Numer. Func. Anal. Opt., 19 (1998), 57-70.
doi: 10.1080/01630569808816814. |
[15] |
M. Miklavčič, Applied Functional Analysis and Partial Differential Equations, World Scientific Publishing Co., 1998. Google Scholar |
[16] |
P. M. Morse and K. U. Ingard, Theoretical Acoustics, McGraw-Hill, New York, 1968. Google Scholar |
[17] |
J. C. Oostveen, R. F. Curtain and K. Ito,
An approximation theory for strongly stabilizing solutions to the operator LQ Riccati equation, SIAM J. Control Optim., 38 (2000), 1909-1937.
doi: 10.1137/S0363012998339691. |
[18] |
J. T. Ottesen,
Valveless pumping in a fluid-filled closed elastic tube-system: one-dimensional theory with experimental validation, J. Math. Biol., 46 (2003), 309-332.
doi: 10.1007/s00285-002-0179-1. |
[19] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, volume 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[20] |
G. Peralta and G. Propst,
Stability and boundary controllability of a linearized model of flow in an elastic tube, ESAIM: Control Optim. Calc. Var., 21 (2015), 583-601.
doi: 10.1051/cocv/2014039. |
[21] |
C. Prieur and J. J. Winkin,
Boundary feedback control of linear hyperbolic systems: Application to Saint-Venant-Exner equations, Automatica, 89 (2018), 44-51.
doi: 10.1016/j.automatica.2017.11.028. |
[22] |
H. Rath and I. Teipel, Der fördereffekt in ventillosen, elastischen leitungen, Z. Angew. Math. Phys., 29 (1978), 123-133. Google Scholar |
[23] |
W. Ruan,
A coupled system of ODEs and quasilinear hyperbolic PDEs arising in a multiscale blood flow model, J. Math. Anal. Appl., 343 (2008), 778-798.
doi: 10.1016/j.jmaa.2008.01.064. |
[24] |
W. Ruan, M. E. Clark, M. Zhao and A. Curcio,
Global solution to a hyperbolic problem arising in the modeling of blood flow in circulatory systems, J. Math. Anal. Appl., 331 (2007), 1068-1092.
doi: 10.1016/j.jmaa.2006.09.034. |
[25] |
D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Review, 20 (1978), 639–739.
doi: 10.1137/1020095. |
[26] |
M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Basel, 2009.
doi: 10.1007/978-3-7643-8994-9. |
[27] |
K. Yosida, Functional Analysis, Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin Heidelberg, 1980. |


[1] |
Maria Laura Delle Monache, Paola Goatin. A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 435-447. doi: 10.3934/dcdss.2014.7.435 |
[2] |
Vanessa Baumgärtner, Simone Göttlich, Stephan Knapp. Feedback stabilization for a coupled PDE-ODE production system. Mathematical Control & Related Fields, 2020, 10 (2) : 405-424. doi: 10.3934/mcrf.2020003 |
[3] |
Youshan Tao, J. Ignacio Tello. Nonlinear stability of a heterogeneous state in a PDE-ODE model for acid-mediated tumor invasion. Mathematical Biosciences & Engineering, 2016, 13 (1) : 193-207. doi: 10.3934/mbe.2016.13.193 |
[4] |
George Avalos, Roberto Triggiani. Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 417-447. doi: 10.3934/dcdss.2009.2.417 |
[5] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[6] |
Davide Guidetti. On hyperbolic mixed problems with dynamic and Wentzell boundary conditions. Discrete & Continuous Dynamical Systems - S, 2020, 13 (12) : 3461-3471. doi: 10.3934/dcdss.2020239 |
[7] |
Qigui Yang, Qiaomin Xiang. Chaotic oscillations of linear hyperbolic PDE with variable coefficients and implicit boundary conditions. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020335 |
[8] |
Ciro D'Apice, Peter I. Kogut, Rosanna Manzo. On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains. Networks & Heterogeneous Media, 2014, 9 (3) : 501-518. doi: 10.3934/nhm.2014.9.501 |
[9] |
Hichem Kasri, Amar Heminna. Exponential stability of a coupled system with Wentzell conditions. Evolution Equations & Control Theory, 2016, 5 (2) : 235-250. doi: 10.3934/eect.2016003 |
[10] |
Ciprian G. Gal, M. Grasselli. On the asymptotic behavior of the Caginalp system with dynamic boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 689-710. doi: 10.3934/cpaa.2009.8.689 |
[11] |
Raluca Clendenen, Gisèle Ruiz Goldstein, Jerome A. Goldstein. Degenerate flux for dynamic boundary conditions in parabolic and hyperbolic equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 651-660. doi: 10.3934/dcdss.2016019 |
[12] |
Nicolas Fourrier, Irena Lasiecka. Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions. Evolution Equations & Control Theory, 2013, 2 (4) : 631-667. doi: 10.3934/eect.2013.2.631 |
[13] |
Luisa Arlotti. Explicit transport semigroup associated to abstract boundary conditions. Conference Publications, 2011, 2011 (Special) : 102-111. doi: 10.3934/proc.2011.2011.102 |
[14] |
Laurence Cherfils, Stefania Gatti, Alain Miranville. Long time behavior of the Caginalp system with singular potentials and dynamic boundary conditions. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2261-2290. doi: 10.3934/cpaa.2012.11.2261 |
[15] |
Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353 |
[16] |
Ciprian G. Gal, Alain Miranville. Robust exponential attractors and convergence to equilibria for non-isothermal Cahn-Hilliard equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 113-147. doi: 10.3934/dcdss.2009.2.113 |
[17] |
Peter Brune, Björn Schmalfuss. Inertial manifolds for stochastic pde with dynamical boundary conditions. Communications on Pure & Applied Analysis, 2011, 10 (3) : 831-846. doi: 10.3934/cpaa.2011.10.831 |
[18] |
El Mustapha Ait Ben Hassi, Salah-Eddine Chorfi, Lahcen Maniar, Omar Oukdach. Lipschitz stability for an inverse source problem in anisotropic parabolic equations with dynamic boundary conditions. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020094 |
[19] |
Lei Wang, Zhong-Jie Han, Gen-Qi Xu. Exponential-stability and super-stability of a thermoelastic system of type II with boundary damping. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2733-2750. doi: 10.3934/dcdsb.2015.20.2733 |
[20] |
Monica Conti, Stefania Gatti, Alain Miranville. Asymptotic behavior of the Caginalp phase-field system with coupled dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 485-505. doi: 10.3934/dcdss.2012.5.485 |
2019 Impact Factor: 0.953
Tools
Metrics
Other articles
by authors
[Back to Top]