• Previous Article
    Stability and stabilization for the three-dimensional Navier-Stokes-Voigt equations with unbounded variable delay
  • EECT Home
  • This Issue
  • Next Article
    Analysis of nonlinear fractional diffusion equations with a Riemann-liouville derivative
doi: 10.3934/eect.2020108

Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems

1. 

Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria

2. 

Department of Mathematics and Computer Science, University of the Philippines Baguio, Governor Pack Road, Baguio, 2600 Philippines

* Corresponding author

Received  June 2020 Revised  October 2020 Published  December 2020

We consider a hyperbolic system of partial differential equations on a bounded interval coupled with ordinary differential equations on both ends. The evolution is governed by linear balance laws, which we treat with semigroup and time-space methods. Our goal is to establish the exponential stability in the natural state space by utilizing the stability with respect to the first-order energy of the system. Derivation of a priori estimates plays a crucial role in obtaining energy and dissipation functionals. The theory is then applied to specific physical models.

Citation: Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, doi: 10.3934/eect.2020108
References:
[1]

G. Bastin and J.-M. Coron, Stability and Boundary Stabilization of 1-D Hyperbolic Systems, volume 88 of Progress in Nonlinear Differential Equations and Their Applications., Birkhäuser Basel, 2016. doi: 10.1007/978-3-319-32062-5.  Google Scholar

[2]

J. T. Beale, Spectral properties of an acoustic boundary condition, Indiana U. Math. J., 25 (1976), 895-917.  doi: 10.1512/iumj.1976.25.25071.  Google Scholar

[3]

R. BorscheR. M. Colombo and M. Garavello, Mixed systems: ODEs - balance laws, J. Differ. Equations, 252 (2012), 2311-2338.  doi: 10.1016/j.jde.2011.08.051.  Google Scholar

[4]

A. Borzi and G. Propst, Numerical investigation of the liebau phenomenon, Z. Angew. Math. Phys., 54 (2003), 1050-1072.  doi: 10.1007/s00033-003-1108-x.  Google Scholar

[5]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, , Springer, New York, 2010.  Google Scholar

[6]

S. Čanić and E. H. Kim, Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels, Math Method Applied Sci., 26 (2003), 1161-1186.  doi: 10.1002/mma.407.  Google Scholar

[7]

R. Courant and D. Hilbert, Methods of Mathematical Physics, II: Partial Differential Equations, Wiley Online Library, 1962.  Google Scholar

[8]

A. CurcioM. E. ClarkM. Zhao and W. Ruan, A hyperbolic system of equations of blood flow in an arterial network, SIAM J. Applied Math., 64 (2004), 637-667.  doi: 10.1137/S0036139902415294.  Google Scholar

[9]

N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory, Interscience Publishers, Inc., New York, 1958.  Google Scholar

[10]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, New York, 2000.  Google Scholar

[11]

M. Á. FernándezV. Milisic and A. Quarteroni, Analysis of a geometrical multiscale blood flow model based on the coupling of odes and hyperbolic pdes, Multiscale Model. Sim., 4 (2005), 215-236.  doi: 10.1137/030602010.  Google Scholar

[12]

P. R. Garabedian, Partial Differential Equations, AMS Chelsea Publishing, 1964.  Google Scholar

[13]

O. Heaviside, Electromagnetic induction and its propagation, The Electrician, 14 (1885), 178-180.   Google Scholar

[14]

K. Ito and G. Propst, Legendre-Tau-Padé approximations to the one-dimensional wave equation with boundary oscillators, Numer. Func. Anal. Opt., 19 (1998), 57-70.  doi: 10.1080/01630569808816814.  Google Scholar

[15]

M. Miklavčič, Applied Functional Analysis and Partial Differential Equations, World Scientific Publishing Co., 1998. Google Scholar

[16]

P. M. Morse and K. U. Ingard, Theoretical Acoustics, McGraw-Hill, New York, 1968. Google Scholar

[17]

J. C. OostveenR. F. Curtain and K. Ito, An approximation theory for strongly stabilizing solutions to the operator LQ Riccati equation, SIAM J. Control Optim., 38 (2000), 1909-1937.  doi: 10.1137/S0363012998339691.  Google Scholar

[18]

J. T. Ottesen, Valveless pumping in a fluid-filled closed elastic tube-system: one-dimensional theory with experimental validation, J. Math. Biol., 46 (2003), 309-332.  doi: 10.1007/s00285-002-0179-1.  Google Scholar

[19]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, volume 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[20]

G. Peralta and G. Propst, Stability and boundary controllability of a linearized model of flow in an elastic tube, ESAIM: Control Optim. Calc. Var., 21 (2015), 583-601.  doi: 10.1051/cocv/2014039.  Google Scholar

[21]

C. Prieur and J. J. Winkin, Boundary feedback control of linear hyperbolic systems: Application to Saint-Venant-Exner equations, Automatica, 89 (2018), 44-51.  doi: 10.1016/j.automatica.2017.11.028.  Google Scholar

[22]

H. Rath and I. Teipel, Der fördereffekt in ventillosen, elastischen leitungen, Z. Angew. Math. Phys., 29 (1978), 123-133.   Google Scholar

[23]

W. Ruan, A coupled system of ODEs and quasilinear hyperbolic PDEs arising in a multiscale blood flow model, J. Math. Anal. Appl., 343 (2008), 778-798.  doi: 10.1016/j.jmaa.2008.01.064.  Google Scholar

[24]

W. RuanM. E. ClarkM. Zhao and A. Curcio, Global solution to a hyperbolic problem arising in the modeling of blood flow in circulatory systems, J. Math. Anal. Appl., 331 (2007), 1068-1092.  doi: 10.1016/j.jmaa.2006.09.034.  Google Scholar

[25]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Review, 20 (1978), 639–739. doi: 10.1137/1020095.  Google Scholar

[26]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[27]

K. Yosida, Functional Analysis, Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin Heidelberg, 1980.  Google Scholar

show all references

References:
[1]

G. Bastin and J.-M. Coron, Stability and Boundary Stabilization of 1-D Hyperbolic Systems, volume 88 of Progress in Nonlinear Differential Equations and Their Applications., Birkhäuser Basel, 2016. doi: 10.1007/978-3-319-32062-5.  Google Scholar

[2]

J. T. Beale, Spectral properties of an acoustic boundary condition, Indiana U. Math. J., 25 (1976), 895-917.  doi: 10.1512/iumj.1976.25.25071.  Google Scholar

[3]

R. BorscheR. M. Colombo and M. Garavello, Mixed systems: ODEs - balance laws, J. Differ. Equations, 252 (2012), 2311-2338.  doi: 10.1016/j.jde.2011.08.051.  Google Scholar

[4]

A. Borzi and G. Propst, Numerical investigation of the liebau phenomenon, Z. Angew. Math. Phys., 54 (2003), 1050-1072.  doi: 10.1007/s00033-003-1108-x.  Google Scholar

[5]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, , Springer, New York, 2010.  Google Scholar

[6]

S. Čanić and E. H. Kim, Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels, Math Method Applied Sci., 26 (2003), 1161-1186.  doi: 10.1002/mma.407.  Google Scholar

[7]

R. Courant and D. Hilbert, Methods of Mathematical Physics, II: Partial Differential Equations, Wiley Online Library, 1962.  Google Scholar

[8]

A. CurcioM. E. ClarkM. Zhao and W. Ruan, A hyperbolic system of equations of blood flow in an arterial network, SIAM J. Applied Math., 64 (2004), 637-667.  doi: 10.1137/S0036139902415294.  Google Scholar

[9]

N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory, Interscience Publishers, Inc., New York, 1958.  Google Scholar

[10]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, New York, 2000.  Google Scholar

[11]

M. Á. FernándezV. Milisic and A. Quarteroni, Analysis of a geometrical multiscale blood flow model based on the coupling of odes and hyperbolic pdes, Multiscale Model. Sim., 4 (2005), 215-236.  doi: 10.1137/030602010.  Google Scholar

[12]

P. R. Garabedian, Partial Differential Equations, AMS Chelsea Publishing, 1964.  Google Scholar

[13]

O. Heaviside, Electromagnetic induction and its propagation, The Electrician, 14 (1885), 178-180.   Google Scholar

[14]

K. Ito and G. Propst, Legendre-Tau-Padé approximations to the one-dimensional wave equation with boundary oscillators, Numer. Func. Anal. Opt., 19 (1998), 57-70.  doi: 10.1080/01630569808816814.  Google Scholar

[15]

M. Miklavčič, Applied Functional Analysis and Partial Differential Equations, World Scientific Publishing Co., 1998. Google Scholar

[16]

P. M. Morse and K. U. Ingard, Theoretical Acoustics, McGraw-Hill, New York, 1968. Google Scholar

[17]

J. C. OostveenR. F. Curtain and K. Ito, An approximation theory for strongly stabilizing solutions to the operator LQ Riccati equation, SIAM J. Control Optim., 38 (2000), 1909-1937.  doi: 10.1137/S0363012998339691.  Google Scholar

[18]

J. T. Ottesen, Valveless pumping in a fluid-filled closed elastic tube-system: one-dimensional theory with experimental validation, J. Math. Biol., 46 (2003), 309-332.  doi: 10.1007/s00285-002-0179-1.  Google Scholar

[19]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, volume 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[20]

G. Peralta and G. Propst, Stability and boundary controllability of a linearized model of flow in an elastic tube, ESAIM: Control Optim. Calc. Var., 21 (2015), 583-601.  doi: 10.1051/cocv/2014039.  Google Scholar

[21]

C. Prieur and J. J. Winkin, Boundary feedback control of linear hyperbolic systems: Application to Saint-Venant-Exner equations, Automatica, 89 (2018), 44-51.  doi: 10.1016/j.automatica.2017.11.028.  Google Scholar

[22]

H. Rath and I. Teipel, Der fördereffekt in ventillosen, elastischen leitungen, Z. Angew. Math. Phys., 29 (1978), 123-133.   Google Scholar

[23]

W. Ruan, A coupled system of ODEs and quasilinear hyperbolic PDEs arising in a multiscale blood flow model, J. Math. Anal. Appl., 343 (2008), 778-798.  doi: 10.1016/j.jmaa.2008.01.064.  Google Scholar

[24]

W. RuanM. E. ClarkM. Zhao and A. Curcio, Global solution to a hyperbolic problem arising in the modeling of blood flow in circulatory systems, J. Math. Anal. Appl., 331 (2007), 1068-1092.  doi: 10.1016/j.jmaa.2006.09.034.  Google Scholar

[25]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Review, 20 (1978), 639–739. doi: 10.1137/1020095.  Google Scholar

[26]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[27]

K. Yosida, Functional Analysis, Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin Heidelberg, 1980.  Google Scholar

Figure 1.  An elastic tube connected to two rigid tanks
Figure 2.  A waveguide terminated by oscillators
[1]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[2]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3109-3140. doi: 10.3934/dcds.2020400

[3]

Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021049

[4]

Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020

[5]

Danielle Hilhorst, Pierre Roux. A hyperbolic-elliptic-parabolic PDE model describing chemotactic E. Coli colonies. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021033

[6]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055

[7]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[8]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[9]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[10]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[11]

Xiaofei Liu, Yong Wang. Weakening convergence conditions of a potential reduction method for tensor complementarity problems. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021080

[12]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3725-3757. doi: 10.3934/dcds.2021014

[13]

Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329

[14]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[15]

Francesca Bucci. Improved boundary regularity for a Stokes-Lamé system. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021018

[16]

Tong Li, Nitesh Mathur. Riemann problem for a non-strictly hyperbolic system in chemotaxis. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021128

[17]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001

[18]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398

[19]

Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3615-3627. doi: 10.3934/dcds.2021009

[20]

Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238

2019 Impact Factor: 0.953

Article outline

Figures and Tables

[Back to Top]