• Previous Article
    Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives
  • EECT Home
  • This Issue
  • Next Article
    Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems
February  2022, 11(1): 225-238. doi: 10.3934/eect.2020109

On time fractional pseudo-parabolic equations with nonlocal integral conditions

1. 

Division of Applied Mathematics, Thu Dau Mot University, Binh Duong Province, Vietnam

2. 

School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland

3. 

Department of Mathematics, Faculty of Arts and Sciences, Cankaya University, 06530 Ankara, Turkey, Institute of Space Sciences, P.O.Box, MG-23, R 76900, Magurele-Bucharest, Romania

* Corresponding author: Nguyen H. Tuan

Received  July 2020 Revised  October 2020 Published  February 2022 Early access  December 2020

In this paper, we study the nonlocal problem for pseudo-parabolic equation with time and space fractional derivatives. The time derivative is of Caputo type and of order $ \sigma,\; \; 0<\sigma<1 $ and the space fractional derivative is of order $ \alpha,\beta >0 $. In the first part, we obtain some results of the existence and uniqueness of our problem with suitably chosen $ \alpha, \beta $. The technique uses a Sobolev embedding and is based on constructing a Mittag-Leffler operator. In the second part, we give the ill-posedness of our problem and give a regularized solution. An error estimate in $ L^p $ between the regularized solution and the sought solution is obtained.

Citation: Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations and Control Theory, 2022, 11 (1) : 225-238. doi: 10.3934/eect.2020109
References:
[1]

J. M. Arrieta and A. N. Carvalho, Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations, Trans. Amer. Math. Soc, 352 (2000), 285-310.  doi: 10.1090/S0002-9947-99-02528-3.

[2]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm Sci, 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A.

[3]

P. N. Belov, The Numerical Methods of Weather Forecasting, Gidrometeoizdat, Leningrad, 1975.

[4]

T. B. BenjaminJ. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London Ser.A, 272 (1972), 47-78.  doi: 10.1098/rsta.1972.0032.

[5]

M. K. Beshtokov, Boundary-value problems for loaded pseudoparabolic equations of fractional order and difference methods of their solving, Russian Mathematics, 63 (2019), 1-10. 

[6]

M. K. Beshtokov, Boundary value problems for a pseudoparabolic equation with the Caputo fractional derivative, Differ. Equ, 55 (2019), 884-893.  doi: 10.1134/S0012266119070024.

[7]

M. K. Beshtokov, Toward boundary-value problems for degenerating pseudoparabolic equations with Gerasimov-Caputo fractional derivative, Izv. Vyssh. Uchebn. Zaved. Mat, 62 (2018), 3-16. 

[8]

P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys, 19 (1968), 614-627.  doi: 10.1007/BF01594969.

[9]

H. Chen and S. Tian, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 258 (2015), 4424-4442.  doi: 10.1016/j.jde.2015.01.038.

[10]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math, 1360 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.

[11]

J.-D. DjidaA. Fernandez and I. Area, Well-posedness results for fractional semi-linear wave equations, Discrete Contin. Dyn. Syst. Ser B, 25 (2020), 569-597.  doi: 10.3934/dcdsb.2019255.

[12]

N. Dokuchaev, On recovering parabolic diffusions from their time-averages, Calc. Var. Partial Differential Equations, 58 (2019), 14 pp. doi: 10.1007/s00526-018-1464-1.

[13]

R. E. EwingR. D. Lazarov and Y. Lin, Finite volume element approximations of nonlocal in time one-dimensional flows in porous media, Computing, 64 (2000), 157-182.  doi: 10.1007/s006070050007.

[14]

R. Gorenflo, A. A. Kilbas and F. Mainardi, Mittag-Leffler Functions, Related Topics and Applications, Springer, Berlin, (2014). doi: 10.1007/978-3-662-43930-2.

[15]

R. Ikehata and T. Suzuki, Stable and unstable sets for evolution equations of parabolic and hyperbolic type, Hiroshima Math. J, 26 (1996), 475-491.  doi: 10.32917/hmj/1206127254.

[16]

M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal, 20 (2017), 7-51.  doi: 10.1515/fca-2017-0002.

[17]

B. Kaltenbacher and W. Rundell, Regularization of a backward parabolic equation by fractional operators, Inverse Probl. Imaging, 13 (2019), 401-430.  doi: 10.3934/ipi.2019020.

[18]

N. H. Luc, L. N. Huynh, D. Baleanu and N. H. Can, Identifying the space source term problem for a generalization of the fractional diffusion equation with hyper-Bessel operator, Adv. Difference Equ, 2020 (2020), 23 pp. doi: 10.1186/s13662-020-02712-y.

[19]

Y. LiuR. Xu and T. Yu, Global existence, nonexistence and asymptotic behavior of solutions for the Cauchy problem of semilinear heat equations, Nonlinear Anal, 68 (2008), 3332-3348.  doi: 10.1016/j.na.2007.03.029.

[20]

T. B. NgocD. BaleanuL. T. M. Duc and N. H. Tuan, Regularity results for fractional diffusion equations involving fractional derivative with Mittag-Leffler kernel, Math. Methods Appl. Sci, 43 (2020), 7208-7226.  doi: 10.1002/mma.6459.

[21]

E. Otárola and A. J. Salgado, Regularity of solutions to space-time fractional wave equations: A PDE approach, Fract. Calc. Appl. Anal, 21 (2018), 1262-1293.  doi: 10.1515/fca-2018-0067.

[22]

C. V. Pao, Reaction diffusion equations with nonlocal boundary and nonlocal initial conditions, J. Math. Anal. Appl., 195 (1995), 702-718.  doi: 10.1006/jmaa.1995.1384.

[23]

Q. Pavol and P. Souplet, Superlinear Parabolic Problems, Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts, Birkhäuser Verlag, Basel, 2007.

[24]

V. Padron, Effect of aggregation on population recovery modeled by a forward-backward pseudo parabolic equation, Trans. Amer. Math. Soc, 356 (2004), 2739-2756.  doi: 10.1090/S0002-9947-03-03340-3.

[25]

K. Sakamoto and M. Yamamoto, Initial value/boudary value problems for fractional diffusion - wave equations and applications to some inverse problems, J. Math. Anal. Appl, 382 (2011), 426-447.  doi: 10.1016/j.jmaa.2011.04.058.

[26]

V. V. Shelukhin, A non-local (in time) model for radionuclides propagation in a Stokes fluid, Dinamika Sploshn. Sredy, 107 (1993), 180-193. 

[27]

R. E. Showalter and T. W. Ting, Pseudoparabolic partial differential equations, SIAM J. Math. Anal, 1 (1970), 1-26.  doi: 10.1137/0501001.

[28]

N. H. Tuan, D. Baleanu, T. N. Thach, D. O'Regan and N. H. Can, Final value problem for nonlinear time fractional reaction-diffusion equation with discrete data, J. Comput. Appl. Math, 376 (2020), 25 pp. doi: 10.1016/j.cam.2020.112883.

[29]

N. H. Tuan, T. B. Ngoc, Y. Zhou and D. O'Regan, On existence and regularity of a terminal value problem for the time fractional diffusion equation, Inverse Problems, 36, (2020), 41 pp. doi: 10.1088/1361-6420/ab730d.

[30]

J. M. Vaquero and S. Sajavicius, The two-level finite difference schemes for the heat equation with nonlocal initial condition, Appl. Math. Comput., 342 (2019), 166-177.  doi: 10.1016/j.amc.2018.09.025.

[31]

R. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Functional Analysis, 264 (2013), 2732-2763.  doi: 10.1016/j.jfa.2013.03.010.

show all references

References:
[1]

J. M. Arrieta and A. N. Carvalho, Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations, Trans. Amer. Math. Soc, 352 (2000), 285-310.  doi: 10.1090/S0002-9947-99-02528-3.

[2]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm Sci, 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A.

[3]

P. N. Belov, The Numerical Methods of Weather Forecasting, Gidrometeoizdat, Leningrad, 1975.

[4]

T. B. BenjaminJ. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London Ser.A, 272 (1972), 47-78.  doi: 10.1098/rsta.1972.0032.

[5]

M. K. Beshtokov, Boundary-value problems for loaded pseudoparabolic equations of fractional order and difference methods of their solving, Russian Mathematics, 63 (2019), 1-10. 

[6]

M. K. Beshtokov, Boundary value problems for a pseudoparabolic equation with the Caputo fractional derivative, Differ. Equ, 55 (2019), 884-893.  doi: 10.1134/S0012266119070024.

[7]

M. K. Beshtokov, Toward boundary-value problems for degenerating pseudoparabolic equations with Gerasimov-Caputo fractional derivative, Izv. Vyssh. Uchebn. Zaved. Mat, 62 (2018), 3-16. 

[8]

P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys, 19 (1968), 614-627.  doi: 10.1007/BF01594969.

[9]

H. Chen and S. Tian, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 258 (2015), 4424-4442.  doi: 10.1016/j.jde.2015.01.038.

[10]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math, 1360 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.

[11]

J.-D. DjidaA. Fernandez and I. Area, Well-posedness results for fractional semi-linear wave equations, Discrete Contin. Dyn. Syst. Ser B, 25 (2020), 569-597.  doi: 10.3934/dcdsb.2019255.

[12]

N. Dokuchaev, On recovering parabolic diffusions from their time-averages, Calc. Var. Partial Differential Equations, 58 (2019), 14 pp. doi: 10.1007/s00526-018-1464-1.

[13]

R. E. EwingR. D. Lazarov and Y. Lin, Finite volume element approximations of nonlocal in time one-dimensional flows in porous media, Computing, 64 (2000), 157-182.  doi: 10.1007/s006070050007.

[14]

R. Gorenflo, A. A. Kilbas and F. Mainardi, Mittag-Leffler Functions, Related Topics and Applications, Springer, Berlin, (2014). doi: 10.1007/978-3-662-43930-2.

[15]

R. Ikehata and T. Suzuki, Stable and unstable sets for evolution equations of parabolic and hyperbolic type, Hiroshima Math. J, 26 (1996), 475-491.  doi: 10.32917/hmj/1206127254.

[16]

M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal, 20 (2017), 7-51.  doi: 10.1515/fca-2017-0002.

[17]

B. Kaltenbacher and W. Rundell, Regularization of a backward parabolic equation by fractional operators, Inverse Probl. Imaging, 13 (2019), 401-430.  doi: 10.3934/ipi.2019020.

[18]

N. H. Luc, L. N. Huynh, D. Baleanu and N. H. Can, Identifying the space source term problem for a generalization of the fractional diffusion equation with hyper-Bessel operator, Adv. Difference Equ, 2020 (2020), 23 pp. doi: 10.1186/s13662-020-02712-y.

[19]

Y. LiuR. Xu and T. Yu, Global existence, nonexistence and asymptotic behavior of solutions for the Cauchy problem of semilinear heat equations, Nonlinear Anal, 68 (2008), 3332-3348.  doi: 10.1016/j.na.2007.03.029.

[20]

T. B. NgocD. BaleanuL. T. M. Duc and N. H. Tuan, Regularity results for fractional diffusion equations involving fractional derivative with Mittag-Leffler kernel, Math. Methods Appl. Sci, 43 (2020), 7208-7226.  doi: 10.1002/mma.6459.

[21]

E. Otárola and A. J. Salgado, Regularity of solutions to space-time fractional wave equations: A PDE approach, Fract. Calc. Appl. Anal, 21 (2018), 1262-1293.  doi: 10.1515/fca-2018-0067.

[22]

C. V. Pao, Reaction diffusion equations with nonlocal boundary and nonlocal initial conditions, J. Math. Anal. Appl., 195 (1995), 702-718.  doi: 10.1006/jmaa.1995.1384.

[23]

Q. Pavol and P. Souplet, Superlinear Parabolic Problems, Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts, Birkhäuser Verlag, Basel, 2007.

[24]

V. Padron, Effect of aggregation on population recovery modeled by a forward-backward pseudo parabolic equation, Trans. Amer. Math. Soc, 356 (2004), 2739-2756.  doi: 10.1090/S0002-9947-03-03340-3.

[25]

K. Sakamoto and M. Yamamoto, Initial value/boudary value problems for fractional diffusion - wave equations and applications to some inverse problems, J. Math. Anal. Appl, 382 (2011), 426-447.  doi: 10.1016/j.jmaa.2011.04.058.

[26]

V. V. Shelukhin, A non-local (in time) model for radionuclides propagation in a Stokes fluid, Dinamika Sploshn. Sredy, 107 (1993), 180-193. 

[27]

R. E. Showalter and T. W. Ting, Pseudoparabolic partial differential equations, SIAM J. Math. Anal, 1 (1970), 1-26.  doi: 10.1137/0501001.

[28]

N. H. Tuan, D. Baleanu, T. N. Thach, D. O'Regan and N. H. Can, Final value problem for nonlinear time fractional reaction-diffusion equation with discrete data, J. Comput. Appl. Math, 376 (2020), 25 pp. doi: 10.1016/j.cam.2020.112883.

[29]

N. H. Tuan, T. B. Ngoc, Y. Zhou and D. O'Regan, On existence and regularity of a terminal value problem for the time fractional diffusion equation, Inverse Problems, 36, (2020), 41 pp. doi: 10.1088/1361-6420/ab730d.

[30]

J. M. Vaquero and S. Sajavicius, The two-level finite difference schemes for the heat equation with nonlocal initial condition, Appl. Math. Comput., 342 (2019), 166-177.  doi: 10.1016/j.amc.2018.09.025.

[31]

R. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Functional Analysis, 264 (2013), 2732-2763.  doi: 10.1016/j.jfa.2013.03.010.

[1]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure and Applied Analysis, 2021, 20 (2) : 583-621. doi: 10.3934/cpaa.2020282

[2]

Huafei Di, Yadong Shang, Xiaoxiao Zheng. Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 781-801. doi: 10.3934/dcdsb.2016.21.781

[3]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[4]

Vo Van Au, Jagdev Singh, Anh Tuan Nguyen. Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, 2021, 29 (6) : 3581-3607. doi: 10.3934/era.2021052

[5]

Irene Benedetti, Valeri Obukhovskii, Valentina Taddei. Evolution fractional differential problems with impulses and nonlocal conditions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 1899-1919. doi: 10.3934/dcdss.2020149

[6]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3659-3683. doi: 10.3934/dcdss.2021023

[7]

Yang Cao, Jingxue Yin. Small perturbation of a semilinear pseudo-parabolic equation. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 631-642. doi: 10.3934/dcds.2016.36.631

[8]

Can Li, Weihua Deng, Lijing Zhao. Well-posedness and numerical algorithm for the tempered fractional differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1989-2015. doi: 10.3934/dcdsb.2019026

[9]

Hui Huang, Jian-Guo Liu. Well-posedness for the Keller-Segel equation with fractional Laplacian and the theory of propagation of chaos. Kinetic and Related Models, 2016, 9 (4) : 715-748. doi: 10.3934/krm.2016013

[10]

Qiang Du, Jiang Yang, Zhi Zhou. Analysis of a nonlocal-in-time parabolic equation. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 339-368. doi: 10.3934/dcdsb.2017016

[11]

Goro Akagi, Kei Matsuura. Well-posedness and large-time behaviors of solutions for a parabolic equation involving $p(x)$-Laplacian. Conference Publications, 2011, 2011 (Special) : 22-31. doi: 10.3934/proc.2011.2011.22

[12]

Barbara Kaltenbacher, Irena Lasiecka. Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions. Conference Publications, 2011, 2011 (Special) : 763-773. doi: 10.3934/proc.2011.2011.763

[13]

Miloud Moussai. Application of the bernstein polynomials for solving the nonlinear fractional type Volterra integro-differential equation with caputo fractional derivatives. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021021

[14]

Jun Zhou. Initial boundary value problem for a inhomogeneous pseudo-parabolic equation. Electronic Research Archive, 2020, 28 (1) : 67-90. doi: 10.3934/era.2020005

[15]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations and Control Theory, 2022, 11 (2) : 399-414. doi: 10.3934/eect.2021005

[16]

Kaouther Bouchama, Yacine Arioua, Abdelkrim Merzougui. The Numerical Solution of the space-time fractional diffusion equation involving the Caputo-Katugampola fractional derivative. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021026

[17]

Filomena Feo, Pablo Raúl Stinga, Bruno Volzone. The fractional nonlocal Ornstein-Uhlenbeck equation, Gaussian symmetrization and regularity. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3269-3298. doi: 10.3934/dcds.2018142

[18]

Luciano Abadías, Carlos Lizama, Pedro J. Miana, M. Pilar Velasco. On well-posedness of vector-valued fractional differential-difference equations. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2679-2708. doi: 10.3934/dcds.2019112

[19]

Xinjie Dai, Aiguo Xiao, Weiping Bu. Stochastic fractional integro-differential equations with weakly singular kernels: Well-posedness and Euler–Maruyama approximation. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021225

[20]

Luc Molinet, Francis Ribaud. On global well-posedness for a class of nonlocal dispersive wave equations. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 657-668. doi: 10.3934/dcds.2006.15.657

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (492)
  • HTML views (557)
  • Cited by (0)

[Back to Top]