-
Previous Article
New results on controllability of fractional evolution systems with order $ \alpha\in (1,2) $
- EECT Home
- This Issue
-
Next Article
A remark on the attainable set of the Schrödinger equation
Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints
1. | Department of Mathematics, University of Maryland, College Park, MD 20740, USA |
2. | Department of Mathematics, Indian Institute of Technology Roorkee, Haridwar Highway, Roorkee, Uttarakhand 247667, India |
3. | M. S. Ramaiah University of Applied Sciences, University House, New BEL Road, MSR Nagar, Bangalore-560 054a, India |
A Pontryagin maximum principle for an optimal control problem in three dimensional linearized compressible viscous flows subject to state constraints is established using the Ekeland variational principle. Since the system considered here is of coupled parabolic-hyperbolic type, the well developed control theory literature using abstract semigroup approach to linear and semilinear partial differential equations does not seem to contain problems of the type studied in this paper. The controls are distributed over a bounded domain, while the state variables are subject to a set of constraints and governed by the compressible Navier-Stokes equations linearized around a suitably regular base state. The maximum principle is of integral-type and obtained for minimizers of a tracking-type integral cost functional.
References:
[1] |
C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis: A Hitchhiker's Guide, Springer-Verlag, 2006. |
[2] |
E. V. Amosova,
Optimal control of a viscous heat-conducting gas flow, Journal of Applied and Industrial Mathematics, 3 (2009), 5-20.
doi: 10.1134/S1990478909010025. |
[3] |
V. Barbu, Optimal Control of Variational Inequalities, Pitman Advanced Publishing Program, 1984. |
[4] |
V. Barbu, Mathematical Methods in Optimization in Differential Systems, Springer, 1994.
doi: 10.1007/978-94-011-0760-0. |
[5] |
V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces, Springer, 2012.
doi: 10.1007/978-94-007-2247-7. |
[6] |
P. Bella, E. Feireisl, B. J. Jin and A. Novotný,
Robustness of strong solutions to the compressible Navier–Stokes system, Mathematische Annalen, 362 (2015), 281-303.
doi: 10.1007/s00208-014-1119-2. |
[7] |
J. Borggaard and J. Burns,
A PDE sensitivity equation method for optimal aerodynamic design, Journal of Computational Physics, 136 (1997), 366-384.
doi: 10.1006/jcph.1997.5743. |
[8] |
Y. Cho and H. Kim,
On classical solutions of the compressible Navier–Stokes equations with nonnegative initial densities, Manuscripta Mathematica, 120 (2006), 91-129.
doi: 10.1007/s00229-006-0637-y. |
[9] |
S. Chowdhury and M. Ramaswamy,
Optimal control of linearized compressible Navier–Stokes equations, ESAIM: Control, Optimization and Calculus of Variations, 19 (2013), 587-615.
doi: 10.1051/cocv/2012023. |
[10] |
S. Chowdhury, M. Ramaswamy and J.-P. Raymond,
Controllability and stabilizability of the linearized compressible Navier–Stokes system in one-dimension, SIAM Journal on Control and Optimization, 50 (2012), 2959-2987.
doi: 10.1137/110846683. |
[11] |
S. S. Collis, K. Ghayour, M. Heinkenschloss, M. Ulbrich and S. Ulbrich, Towards adjoint-based methods for aeroacoustic control, in 39th Aerospace Science Meeting & Exhibit, Reno, NV, AIAA PAPER, (2001), 2001-821, 1–17.
doi: 10.2514/6.2001-821. |
[12] |
S. S. Collis, K. Ghayour, M. Heinkenschloss, M. Ulbrich and S. Ulbrich, Numerical solution of optimal control problems governed by the compressible Navier–Stokes equations, in Optimal Control of Complex Structures: International Conference in Oberwolfach, Birkhäuser Basel, Basel, (2002), 43–55. |
[13] |
H. B. da Veiga, Diffusion on viscous fluids, Existence and asymptotic properties of solutions, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, 10 (1983), 341–355. |
[14] |
S. Doboszczak, M. T. Mohan and S. S. Sritharan,
Existence of optimal controls for compressible viscous flow, Journal of Mathematical Fluid Mechanics, 20 (2018), 199-211.
doi: 10.1007/s00021-017-0318-5. |
[15] |
I. Ekeland,
On the variational principle, Journal of Mathematical Analysis and Applications, 47 (1974), 324-353.
doi: 10.1016/0022-247X(74)90025-0. |
[16] |
I. Ekeland,
Nonconvex minimization problems, Bulletin of the American Mathematical Society, 1 (1979), 443-473.
doi: 10.1090/S0273-0979-1979-14595-6. |
[17] |
S. Ervedoza, O. Glass, S. Guerrero and J.-P. Puel,
Local exact controllability for the one–dimensional compressible Navier–Stokes equation, Arch. Rational Mech. Anal., 206 (2012), 189-238.
doi: 10.1007/s00205-012-0534-3. |
[18] |
H. C. Fattorini and S. S. Sritharan,
Necessary and sufficient conditions for optimal controls in viscous flow problems, Proceedings of the Royal Society of London Series A, 124 (1994), 211-251.
doi: 10.1017/S0308210500028444. |
[19] |
H. O. Fattorini, Infinite Dimensional Optimization and Control Theory, Cambridge University Press, 1999.
doi: 10.1017/CBO9780511574795.![]() ![]() |
[20] |
H. O. Fattorini and S. S. Sritharan,
Optimal control problems with state constraints in fluid mechanics and combustion, Applied Mathematics and Optimization, 38 (1998), 159-192.
doi: 10.1007/s002459900087. |
[21] |
E. Feireisl, A. Novotný and H. Petzeltová,
On the existence of globally defined weak solutions to the Navier–Stokes equations, Journal of Mathematical Fluid Mechanics, 3 (2001), 358-392.
doi: 10.1007/PL00000976. |
[22] |
A. V. Fursikov, Optimal Control of Distributed Systems, Theory and Applications, American Mathemtical Society, Rhode Island, 2000.
doi: 10.1090/mmono/187. |
[23] |
G. Geymonat and P. Leyland,
Transport and propagation of a perturbation of a flow of a compressible fluid in a bounded region, Archive for Rational Mechanics and Analysis, 100 (1987), 53-81.
doi: 10.1007/BF00281247. |
[24] |
M. D. Gunzburger, Perspectives in Flow Control and Optimization, SIAM's Advances in Design and Control series, Philadelphia, 2003. |
[25] |
A. Jameson, N. Pierce and L. Martinelli,
Optimum aerodynamic design using the Navier–Stokes equations, Theoretical Computational Fluid Dynamics, 10 (1998), 213-237.
doi: 10.2514/6.1997-101. |
[26] |
X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhauser Boston, 1995.
doi: 10.1007/978-1-4612-4260-4. |
[27] |
J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, 1971. |
[28] |
P. L. Lions, Mathematical Topics in Fluid Mechanics, Volume 2: Compressible Models, Clarendon Press, 1998.
![]() |
[29] |
A. Matsumura and T. Nishida,
The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.
doi: 10.1215/kjm/1250522322. |
[30] |
D. Mitra, M. Ramaswamy and J.-P. Raymond,
Local stabilization of compressible navier-stokes equations in one dimension around non-zero velocity, Advances in Differential Equations, 22 (2017), 693-736.
|
[31] |
J. Neustupa, A semigroup generated by the linearized Navier-Stokes equations for compressible fluid and its uniform growth bound in Hölder spaces, in Navier-Stokes Equations: Theory and Numerical Methods (ed. R. Salvi), Pitman. Research Notes Math. Ser., (1998), 86–100. |
[32] |
A. Novotný and I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow, Oxford Lecture Series in Mathematics and Its Applications, OUP Oxford, 2004. |
[33] |
J. J. Otero, A. S. Sharma and R. D. Sandberg, Adjoint-based optimal flow control for compressible DNS, preprint, arXiv: 1603.05887v2. Google Scholar |
[34] |
J.-P. Penot, Calculus Without Derivatives, Springer, 2013.
doi: 10.1007/978-1-4614-4538-8. |
[35] |
V. A. Solonnikov, Solvability of the initial–boundary-value problem for the equations of motion of a viscous compressible fluid, Zap. Nauchn. Semin. LOMI, 56, (1976), 128–142. |
[36] |
V. A. Solonnikov,
On the solvability of initial-boundary value problems for a viscous compressible fluid in an infinite time interval, St. Petersburg Math. J., 27 (2016), 523-546.
doi: 10.1090/spmj/1402. |
[37] |
S. S. Sritharan, Optimal Control of Viscous Flow, SIAM Frontiers in Applied Mathematics, Philadelphia, 1998.
doi: 10.1137/1.9781611971415. |
[38] |
G. Ströhmer,
About compressible viscous fluid flow in a bounded region, Pacific J. of Math., 143 (1990), 359-375.
doi: 10.2140/pjm.1990.143.359. |
[39] |
G. Ströhmer,
About the resolvent of an operator from fluid dynamics, Math. Z., 194 (1987), 183-191.
doi: 10.1007/BF01161967. |
[40] |
A. Valli, Periodic and stationary solutions for compressible Navier–Stokes equations via a stability method, Annali della Scuola Normale Superiore di Pisa–Classe di Scienze, 10 (1983), 607–647. |
[41] |
G. Wang and L. Wang,
Maximum principle of state-constrained optimal control governed by fluid dynamic systems, Nonlinear Analysis, 52 (2003), 1911-1931.
doi: 10.1016/S0362-546X(02)00282-1. |
show all references
References:
[1] |
C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis: A Hitchhiker's Guide, Springer-Verlag, 2006. |
[2] |
E. V. Amosova,
Optimal control of a viscous heat-conducting gas flow, Journal of Applied and Industrial Mathematics, 3 (2009), 5-20.
doi: 10.1134/S1990478909010025. |
[3] |
V. Barbu, Optimal Control of Variational Inequalities, Pitman Advanced Publishing Program, 1984. |
[4] |
V. Barbu, Mathematical Methods in Optimization in Differential Systems, Springer, 1994.
doi: 10.1007/978-94-011-0760-0. |
[5] |
V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces, Springer, 2012.
doi: 10.1007/978-94-007-2247-7. |
[6] |
P. Bella, E. Feireisl, B. J. Jin and A. Novotný,
Robustness of strong solutions to the compressible Navier–Stokes system, Mathematische Annalen, 362 (2015), 281-303.
doi: 10.1007/s00208-014-1119-2. |
[7] |
J. Borggaard and J. Burns,
A PDE sensitivity equation method for optimal aerodynamic design, Journal of Computational Physics, 136 (1997), 366-384.
doi: 10.1006/jcph.1997.5743. |
[8] |
Y. Cho and H. Kim,
On classical solutions of the compressible Navier–Stokes equations with nonnegative initial densities, Manuscripta Mathematica, 120 (2006), 91-129.
doi: 10.1007/s00229-006-0637-y. |
[9] |
S. Chowdhury and M. Ramaswamy,
Optimal control of linearized compressible Navier–Stokes equations, ESAIM: Control, Optimization and Calculus of Variations, 19 (2013), 587-615.
doi: 10.1051/cocv/2012023. |
[10] |
S. Chowdhury, M. Ramaswamy and J.-P. Raymond,
Controllability and stabilizability of the linearized compressible Navier–Stokes system in one-dimension, SIAM Journal on Control and Optimization, 50 (2012), 2959-2987.
doi: 10.1137/110846683. |
[11] |
S. S. Collis, K. Ghayour, M. Heinkenschloss, M. Ulbrich and S. Ulbrich, Towards adjoint-based methods for aeroacoustic control, in 39th Aerospace Science Meeting & Exhibit, Reno, NV, AIAA PAPER, (2001), 2001-821, 1–17.
doi: 10.2514/6.2001-821. |
[12] |
S. S. Collis, K. Ghayour, M. Heinkenschloss, M. Ulbrich and S. Ulbrich, Numerical solution of optimal control problems governed by the compressible Navier–Stokes equations, in Optimal Control of Complex Structures: International Conference in Oberwolfach, Birkhäuser Basel, Basel, (2002), 43–55. |
[13] |
H. B. da Veiga, Diffusion on viscous fluids, Existence and asymptotic properties of solutions, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, 10 (1983), 341–355. |
[14] |
S. Doboszczak, M. T. Mohan and S. S. Sritharan,
Existence of optimal controls for compressible viscous flow, Journal of Mathematical Fluid Mechanics, 20 (2018), 199-211.
doi: 10.1007/s00021-017-0318-5. |
[15] |
I. Ekeland,
On the variational principle, Journal of Mathematical Analysis and Applications, 47 (1974), 324-353.
doi: 10.1016/0022-247X(74)90025-0. |
[16] |
I. Ekeland,
Nonconvex minimization problems, Bulletin of the American Mathematical Society, 1 (1979), 443-473.
doi: 10.1090/S0273-0979-1979-14595-6. |
[17] |
S. Ervedoza, O. Glass, S. Guerrero and J.-P. Puel,
Local exact controllability for the one–dimensional compressible Navier–Stokes equation, Arch. Rational Mech. Anal., 206 (2012), 189-238.
doi: 10.1007/s00205-012-0534-3. |
[18] |
H. C. Fattorini and S. S. Sritharan,
Necessary and sufficient conditions for optimal controls in viscous flow problems, Proceedings of the Royal Society of London Series A, 124 (1994), 211-251.
doi: 10.1017/S0308210500028444. |
[19] |
H. O. Fattorini, Infinite Dimensional Optimization and Control Theory, Cambridge University Press, 1999.
doi: 10.1017/CBO9780511574795.![]() ![]() |
[20] |
H. O. Fattorini and S. S. Sritharan,
Optimal control problems with state constraints in fluid mechanics and combustion, Applied Mathematics and Optimization, 38 (1998), 159-192.
doi: 10.1007/s002459900087. |
[21] |
E. Feireisl, A. Novotný and H. Petzeltová,
On the existence of globally defined weak solutions to the Navier–Stokes equations, Journal of Mathematical Fluid Mechanics, 3 (2001), 358-392.
doi: 10.1007/PL00000976. |
[22] |
A. V. Fursikov, Optimal Control of Distributed Systems, Theory and Applications, American Mathemtical Society, Rhode Island, 2000.
doi: 10.1090/mmono/187. |
[23] |
G. Geymonat and P. Leyland,
Transport and propagation of a perturbation of a flow of a compressible fluid in a bounded region, Archive for Rational Mechanics and Analysis, 100 (1987), 53-81.
doi: 10.1007/BF00281247. |
[24] |
M. D. Gunzburger, Perspectives in Flow Control and Optimization, SIAM's Advances in Design and Control series, Philadelphia, 2003. |
[25] |
A. Jameson, N. Pierce and L. Martinelli,
Optimum aerodynamic design using the Navier–Stokes equations, Theoretical Computational Fluid Dynamics, 10 (1998), 213-237.
doi: 10.2514/6.1997-101. |
[26] |
X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhauser Boston, 1995.
doi: 10.1007/978-1-4612-4260-4. |
[27] |
J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, 1971. |
[28] |
P. L. Lions, Mathematical Topics in Fluid Mechanics, Volume 2: Compressible Models, Clarendon Press, 1998.
![]() |
[29] |
A. Matsumura and T. Nishida,
The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.
doi: 10.1215/kjm/1250522322. |
[30] |
D. Mitra, M. Ramaswamy and J.-P. Raymond,
Local stabilization of compressible navier-stokes equations in one dimension around non-zero velocity, Advances in Differential Equations, 22 (2017), 693-736.
|
[31] |
J. Neustupa, A semigroup generated by the linearized Navier-Stokes equations for compressible fluid and its uniform growth bound in Hölder spaces, in Navier-Stokes Equations: Theory and Numerical Methods (ed. R. Salvi), Pitman. Research Notes Math. Ser., (1998), 86–100. |
[32] |
A. Novotný and I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow, Oxford Lecture Series in Mathematics and Its Applications, OUP Oxford, 2004. |
[33] |
J. J. Otero, A. S. Sharma and R. D. Sandberg, Adjoint-based optimal flow control for compressible DNS, preprint, arXiv: 1603.05887v2. Google Scholar |
[34] |
J.-P. Penot, Calculus Without Derivatives, Springer, 2013.
doi: 10.1007/978-1-4614-4538-8. |
[35] |
V. A. Solonnikov, Solvability of the initial–boundary-value problem for the equations of motion of a viscous compressible fluid, Zap. Nauchn. Semin. LOMI, 56, (1976), 128–142. |
[36] |
V. A. Solonnikov,
On the solvability of initial-boundary value problems for a viscous compressible fluid in an infinite time interval, St. Petersburg Math. J., 27 (2016), 523-546.
doi: 10.1090/spmj/1402. |
[37] |
S. S. Sritharan, Optimal Control of Viscous Flow, SIAM Frontiers in Applied Mathematics, Philadelphia, 1998.
doi: 10.1137/1.9781611971415. |
[38] |
G. Ströhmer,
About compressible viscous fluid flow in a bounded region, Pacific J. of Math., 143 (1990), 359-375.
doi: 10.2140/pjm.1990.143.359. |
[39] |
G. Ströhmer,
About the resolvent of an operator from fluid dynamics, Math. Z., 194 (1987), 183-191.
doi: 10.1007/BF01161967. |
[40] |
A. Valli, Periodic and stationary solutions for compressible Navier–Stokes equations via a stability method, Annali della Scuola Normale Superiore di Pisa–Classe di Scienze, 10 (1983), 607–647. |
[41] |
G. Wang and L. Wang,
Maximum principle of state-constrained optimal control governed by fluid dynamic systems, Nonlinear Analysis, 52 (2003), 1911-1931.
doi: 10.1016/S0362-546X(02)00282-1. |
[1] |
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020348 |
[2] |
Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021005 |
[3] |
Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020048 |
[4] |
Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128 |
[5] |
Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241 |
[6] |
Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001 |
[7] |
Giuseppe Capobianco, Tom Winandy, Simon R. Eugster. The principle of virtual work and Hamilton's principle on Galilean manifolds. Journal of Geometric Mechanics, 2021 doi: 10.3934/jgm.2021002 |
[8] |
Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141 |
[9] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[10] |
Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020408 |
[11] |
Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142 |
[12] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[13] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[14] |
Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234 |
[15] |
Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020045 |
[16] |
Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062 |
[17] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
[18] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[19] |
Sanmei Zhu, Jun-e Feng, Jianli Zhao. State feedback for set stabilization of Markovian jump Boolean control networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1591-1605. doi: 10.3934/dcdss.2020413 |
[20] |
Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021009 |
2019 Impact Factor: 0.953
Tools
Metrics
Other articles
by authors
[Back to Top]