doi: 10.3934/eect.2020110

Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints

1. 

Department of Mathematics, University of Maryland, College Park, MD 20740, USA

2. 

Department of Mathematics, Indian Institute of Technology Roorkee, Haridwar Highway, Roorkee, Uttarakhand 247667, India

3. 

M. S. Ramaiah University of Applied Sciences, University House, New BEL Road, MSR Nagar, Bangalore-560 054a, India

*Corresponding author: doboss27@umd.edu

Received  September 2020 Revised  September 2020 Published  December 2020

A Pontryagin maximum principle for an optimal control problem in three dimensional linearized compressible viscous flows subject to state constraints is established using the Ekeland variational principle. Since the system considered here is of coupled parabolic-hyperbolic type, the well developed control theory literature using abstract semigroup approach to linear and semilinear partial differential equations does not seem to contain problems of the type studied in this paper. The controls are distributed over a bounded domain, while the state variables are subject to a set of constraints and governed by the compressible Navier-Stokes equations linearized around a suitably regular base state. The maximum principle is of integral-type and obtained for minimizers of a tracking-type integral cost functional.

Citation: Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, doi: 10.3934/eect.2020110
References:
[1]

C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis: A Hitchhiker's Guide, Springer-Verlag, 2006.  Google Scholar

[2]

E. V. Amosova, Optimal control of a viscous heat-conducting gas flow, Journal of Applied and Industrial Mathematics, 3 (2009), 5-20.  doi: 10.1134/S1990478909010025.  Google Scholar

[3]

V. Barbu, Optimal Control of Variational Inequalities, Pitman Advanced Publishing Program, 1984.  Google Scholar

[4]

V. Barbu, Mathematical Methods in Optimization in Differential Systems, Springer, 1994. doi: 10.1007/978-94-011-0760-0.  Google Scholar

[5]

V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces, Springer, 2012. doi: 10.1007/978-94-007-2247-7.  Google Scholar

[6]

P. BellaE. FeireislB. J. Jin and A. Novotný, Robustness of strong solutions to the compressible Navier–Stokes system, Mathematische Annalen, 362 (2015), 281-303.  doi: 10.1007/s00208-014-1119-2.  Google Scholar

[7]

J. Borggaard and J. Burns, A PDE sensitivity equation method for optimal aerodynamic design, Journal of Computational Physics, 136 (1997), 366-384.  doi: 10.1006/jcph.1997.5743.  Google Scholar

[8]

Y. Cho and H. Kim, On classical solutions of the compressible Navier–Stokes equations with nonnegative initial densities, Manuscripta Mathematica, 120 (2006), 91-129.  doi: 10.1007/s00229-006-0637-y.  Google Scholar

[9]

S. Chowdhury and M. Ramaswamy, Optimal control of linearized compressible Navier–Stokes equations, ESAIM: Control, Optimization and Calculus of Variations, 19 (2013), 587-615.  doi: 10.1051/cocv/2012023.  Google Scholar

[10]

S. ChowdhuryM. Ramaswamy and J.-P. Raymond, Controllability and stabilizability of the linearized compressible Navier–Stokes system in one-dimension, SIAM Journal on Control and Optimization, 50 (2012), 2959-2987.  doi: 10.1137/110846683.  Google Scholar

[11]

S. S. Collis, K. Ghayour, M. Heinkenschloss, M. Ulbrich and S. Ulbrich, Towards adjoint-based methods for aeroacoustic control, in 39th Aerospace Science Meeting & Exhibit, Reno, NV, AIAA PAPER, (2001), 2001-821, 1–17. doi: 10.2514/6.2001-821.  Google Scholar

[12]

S. S. Collis, K. Ghayour, M. Heinkenschloss, M. Ulbrich and S. Ulbrich, Numerical solution of optimal control problems governed by the compressible Navier–Stokes equations, in Optimal Control of Complex Structures: International Conference in Oberwolfach, Birkhäuser Basel, Basel, (2002), 43–55.  Google Scholar

[13]

H. B. da Veiga, Diffusion on viscous fluids, Existence and asymptotic properties of solutions, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, 10 (1983), 341–355.  Google Scholar

[14]

S. DoboszczakM. T. Mohan and S. S. Sritharan, Existence of optimal controls for compressible viscous flow, Journal of Mathematical Fluid Mechanics, 20 (2018), 199-211.  doi: 10.1007/s00021-017-0318-5.  Google Scholar

[15]

I. Ekeland, On the variational principle, Journal of Mathematical Analysis and Applications, 47 (1974), 324-353.  doi: 10.1016/0022-247X(74)90025-0.  Google Scholar

[16]

I. Ekeland, Nonconvex minimization problems, Bulletin of the American Mathematical Society, 1 (1979), 443-473.  doi: 10.1090/S0273-0979-1979-14595-6.  Google Scholar

[17]

S. ErvedozaO. GlassS. Guerrero and J.-P. Puel, Local exact controllability for the one–dimensional compressible Navier–Stokes equation, Arch. Rational Mech. Anal., 206 (2012), 189-238.  doi: 10.1007/s00205-012-0534-3.  Google Scholar

[18]

H. C. Fattorini and S. S. Sritharan, Necessary and sufficient conditions for optimal controls in viscous flow problems, Proceedings of the Royal Society of London Series A, 124 (1994), 211-251.  doi: 10.1017/S0308210500028444.  Google Scholar

[19] H. O. Fattorini, Infinite Dimensional Optimization and Control Theory, Cambridge University Press, 1999.  doi: 10.1017/CBO9780511574795.  Google Scholar
[20]

H. O. Fattorini and S. S. Sritharan, Optimal control problems with state constraints in fluid mechanics and combustion, Applied Mathematics and Optimization, 38 (1998), 159-192.  doi: 10.1007/s002459900087.  Google Scholar

[21]

E. FeireislA. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier–Stokes equations, Journal of Mathematical Fluid Mechanics, 3 (2001), 358-392.  doi: 10.1007/PL00000976.  Google Scholar

[22]

A. V. Fursikov, Optimal Control of Distributed Systems, Theory and Applications, American Mathemtical Society, Rhode Island, 2000. doi: 10.1090/mmono/187.  Google Scholar

[23]

G. Geymonat and P. Leyland, Transport and propagation of a perturbation of a flow of a compressible fluid in a bounded region, Archive for Rational Mechanics and Analysis, 100 (1987), 53-81.  doi: 10.1007/BF00281247.  Google Scholar

[24]

M. D. Gunzburger, Perspectives in Flow Control and Optimization, SIAM's Advances in Design and Control series, Philadelphia, 2003.  Google Scholar

[25]

A. JamesonN. Pierce and L. Martinelli, Optimum aerodynamic design using the Navier–Stokes equations, Theoretical Computational Fluid Dynamics, 10 (1998), 213-237.  doi: 10.2514/6.1997-101.  Google Scholar

[26]

X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhauser Boston, 1995. doi: 10.1007/978-1-4612-4260-4.  Google Scholar

[27]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, 1971.  Google Scholar

[28] P. L. Lions, Mathematical Topics in Fluid Mechanics, Volume 2: Compressible Models, Clarendon Press, 1998.   Google Scholar
[29]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.  doi: 10.1215/kjm/1250522322.  Google Scholar

[30]

D. MitraM. Ramaswamy and J.-P. Raymond, Local stabilization of compressible navier-stokes equations in one dimension around non-zero velocity, Advances in Differential Equations, 22 (2017), 693-736.   Google Scholar

[31]

J. Neustupa, A semigroup generated by the linearized Navier-Stokes equations for compressible fluid and its uniform growth bound in Hölder spaces, in Navier-Stokes Equations: Theory and Numerical Methods (ed. R. Salvi), Pitman. Research Notes Math. Ser., (1998), 86–100.  Google Scholar

[32]

A. Novotný and I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow, Oxford Lecture Series in Mathematics and Its Applications, OUP Oxford, 2004.  Google Scholar

[33]

J. J. Otero, A. S. Sharma and R. D. Sandberg, Adjoint-based optimal flow control for compressible DNS, preprint, arXiv: 1603.05887v2. Google Scholar

[34]

J.-P. Penot, Calculus Without Derivatives, Springer, 2013. doi: 10.1007/978-1-4614-4538-8.  Google Scholar

[35]

V. A. Solonnikov, Solvability of the initial–boundary-value problem for the equations of motion of a viscous compressible fluid, Zap. Nauchn. Semin. LOMI, 56, (1976), 128–142.  Google Scholar

[36]

V. A. Solonnikov, On the solvability of initial-boundary value problems for a viscous compressible fluid in an infinite time interval, St. Petersburg Math. J., 27 (2016), 523-546.  doi: 10.1090/spmj/1402.  Google Scholar

[37]

S. S. Sritharan, Optimal Control of Viscous Flow, SIAM Frontiers in Applied Mathematics, Philadelphia, 1998. doi: 10.1137/1.9781611971415.  Google Scholar

[38]

G. Ströhmer, About compressible viscous fluid flow in a bounded region, Pacific J. of Math., 143 (1990), 359-375.  doi: 10.2140/pjm.1990.143.359.  Google Scholar

[39]

G. Ströhmer, About the resolvent of an operator from fluid dynamics, Math. Z., 194 (1987), 183-191.  doi: 10.1007/BF01161967.  Google Scholar

[40]

A. Valli, Periodic and stationary solutions for compressible Navier–Stokes equations via a stability method, Annali della Scuola Normale Superiore di Pisa–Classe di Scienze, 10 (1983), 607–647.  Google Scholar

[41]

G. Wang and L. Wang, Maximum principle of state-constrained optimal control governed by fluid dynamic systems, Nonlinear Analysis, 52 (2003), 1911-1931.  doi: 10.1016/S0362-546X(02)00282-1.  Google Scholar

show all references

References:
[1]

C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis: A Hitchhiker's Guide, Springer-Verlag, 2006.  Google Scholar

[2]

E. V. Amosova, Optimal control of a viscous heat-conducting gas flow, Journal of Applied and Industrial Mathematics, 3 (2009), 5-20.  doi: 10.1134/S1990478909010025.  Google Scholar

[3]

V. Barbu, Optimal Control of Variational Inequalities, Pitman Advanced Publishing Program, 1984.  Google Scholar

[4]

V. Barbu, Mathematical Methods in Optimization in Differential Systems, Springer, 1994. doi: 10.1007/978-94-011-0760-0.  Google Scholar

[5]

V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces, Springer, 2012. doi: 10.1007/978-94-007-2247-7.  Google Scholar

[6]

P. BellaE. FeireislB. J. Jin and A. Novotný, Robustness of strong solutions to the compressible Navier–Stokes system, Mathematische Annalen, 362 (2015), 281-303.  doi: 10.1007/s00208-014-1119-2.  Google Scholar

[7]

J. Borggaard and J. Burns, A PDE sensitivity equation method for optimal aerodynamic design, Journal of Computational Physics, 136 (1997), 366-384.  doi: 10.1006/jcph.1997.5743.  Google Scholar

[8]

Y. Cho and H. Kim, On classical solutions of the compressible Navier–Stokes equations with nonnegative initial densities, Manuscripta Mathematica, 120 (2006), 91-129.  doi: 10.1007/s00229-006-0637-y.  Google Scholar

[9]

S. Chowdhury and M. Ramaswamy, Optimal control of linearized compressible Navier–Stokes equations, ESAIM: Control, Optimization and Calculus of Variations, 19 (2013), 587-615.  doi: 10.1051/cocv/2012023.  Google Scholar

[10]

S. ChowdhuryM. Ramaswamy and J.-P. Raymond, Controllability and stabilizability of the linearized compressible Navier–Stokes system in one-dimension, SIAM Journal on Control and Optimization, 50 (2012), 2959-2987.  doi: 10.1137/110846683.  Google Scholar

[11]

S. S. Collis, K. Ghayour, M. Heinkenschloss, M. Ulbrich and S. Ulbrich, Towards adjoint-based methods for aeroacoustic control, in 39th Aerospace Science Meeting & Exhibit, Reno, NV, AIAA PAPER, (2001), 2001-821, 1–17. doi: 10.2514/6.2001-821.  Google Scholar

[12]

S. S. Collis, K. Ghayour, M. Heinkenschloss, M. Ulbrich and S. Ulbrich, Numerical solution of optimal control problems governed by the compressible Navier–Stokes equations, in Optimal Control of Complex Structures: International Conference in Oberwolfach, Birkhäuser Basel, Basel, (2002), 43–55.  Google Scholar

[13]

H. B. da Veiga, Diffusion on viscous fluids, Existence and asymptotic properties of solutions, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, 10 (1983), 341–355.  Google Scholar

[14]

S. DoboszczakM. T. Mohan and S. S. Sritharan, Existence of optimal controls for compressible viscous flow, Journal of Mathematical Fluid Mechanics, 20 (2018), 199-211.  doi: 10.1007/s00021-017-0318-5.  Google Scholar

[15]

I. Ekeland, On the variational principle, Journal of Mathematical Analysis and Applications, 47 (1974), 324-353.  doi: 10.1016/0022-247X(74)90025-0.  Google Scholar

[16]

I. Ekeland, Nonconvex minimization problems, Bulletin of the American Mathematical Society, 1 (1979), 443-473.  doi: 10.1090/S0273-0979-1979-14595-6.  Google Scholar

[17]

S. ErvedozaO. GlassS. Guerrero and J.-P. Puel, Local exact controllability for the one–dimensional compressible Navier–Stokes equation, Arch. Rational Mech. Anal., 206 (2012), 189-238.  doi: 10.1007/s00205-012-0534-3.  Google Scholar

[18]

H. C. Fattorini and S. S. Sritharan, Necessary and sufficient conditions for optimal controls in viscous flow problems, Proceedings of the Royal Society of London Series A, 124 (1994), 211-251.  doi: 10.1017/S0308210500028444.  Google Scholar

[19] H. O. Fattorini, Infinite Dimensional Optimization and Control Theory, Cambridge University Press, 1999.  doi: 10.1017/CBO9780511574795.  Google Scholar
[20]

H. O. Fattorini and S. S. Sritharan, Optimal control problems with state constraints in fluid mechanics and combustion, Applied Mathematics and Optimization, 38 (1998), 159-192.  doi: 10.1007/s002459900087.  Google Scholar

[21]

E. FeireislA. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier–Stokes equations, Journal of Mathematical Fluid Mechanics, 3 (2001), 358-392.  doi: 10.1007/PL00000976.  Google Scholar

[22]

A. V. Fursikov, Optimal Control of Distributed Systems, Theory and Applications, American Mathemtical Society, Rhode Island, 2000. doi: 10.1090/mmono/187.  Google Scholar

[23]

G. Geymonat and P. Leyland, Transport and propagation of a perturbation of a flow of a compressible fluid in a bounded region, Archive for Rational Mechanics and Analysis, 100 (1987), 53-81.  doi: 10.1007/BF00281247.  Google Scholar

[24]

M. D. Gunzburger, Perspectives in Flow Control and Optimization, SIAM's Advances in Design and Control series, Philadelphia, 2003.  Google Scholar

[25]

A. JamesonN. Pierce and L. Martinelli, Optimum aerodynamic design using the Navier–Stokes equations, Theoretical Computational Fluid Dynamics, 10 (1998), 213-237.  doi: 10.2514/6.1997-101.  Google Scholar

[26]

X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhauser Boston, 1995. doi: 10.1007/978-1-4612-4260-4.  Google Scholar

[27]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, 1971.  Google Scholar

[28] P. L. Lions, Mathematical Topics in Fluid Mechanics, Volume 2: Compressible Models, Clarendon Press, 1998.   Google Scholar
[29]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.  doi: 10.1215/kjm/1250522322.  Google Scholar

[30]

D. MitraM. Ramaswamy and J.-P. Raymond, Local stabilization of compressible navier-stokes equations in one dimension around non-zero velocity, Advances in Differential Equations, 22 (2017), 693-736.   Google Scholar

[31]

J. Neustupa, A semigroup generated by the linearized Navier-Stokes equations for compressible fluid and its uniform growth bound in Hölder spaces, in Navier-Stokes Equations: Theory and Numerical Methods (ed. R. Salvi), Pitman. Research Notes Math. Ser., (1998), 86–100.  Google Scholar

[32]

A. Novotný and I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow, Oxford Lecture Series in Mathematics and Its Applications, OUP Oxford, 2004.  Google Scholar

[33]

J. J. Otero, A. S. Sharma and R. D. Sandberg, Adjoint-based optimal flow control for compressible DNS, preprint, arXiv: 1603.05887v2. Google Scholar

[34]

J.-P. Penot, Calculus Without Derivatives, Springer, 2013. doi: 10.1007/978-1-4614-4538-8.  Google Scholar

[35]

V. A. Solonnikov, Solvability of the initial–boundary-value problem for the equations of motion of a viscous compressible fluid, Zap. Nauchn. Semin. LOMI, 56, (1976), 128–142.  Google Scholar

[36]

V. A. Solonnikov, On the solvability of initial-boundary value problems for a viscous compressible fluid in an infinite time interval, St. Petersburg Math. J., 27 (2016), 523-546.  doi: 10.1090/spmj/1402.  Google Scholar

[37]

S. S. Sritharan, Optimal Control of Viscous Flow, SIAM Frontiers in Applied Mathematics, Philadelphia, 1998. doi: 10.1137/1.9781611971415.  Google Scholar

[38]

G. Ströhmer, About compressible viscous fluid flow in a bounded region, Pacific J. of Math., 143 (1990), 359-375.  doi: 10.2140/pjm.1990.143.359.  Google Scholar

[39]

G. Ströhmer, About the resolvent of an operator from fluid dynamics, Math. Z., 194 (1987), 183-191.  doi: 10.1007/BF01161967.  Google Scholar

[40]

A. Valli, Periodic and stationary solutions for compressible Navier–Stokes equations via a stability method, Annali della Scuola Normale Superiore di Pisa–Classe di Scienze, 10 (1983), 607–647.  Google Scholar

[41]

G. Wang and L. Wang, Maximum principle of state-constrained optimal control governed by fluid dynamic systems, Nonlinear Analysis, 52 (2003), 1911-1931.  doi: 10.1016/S0362-546X(02)00282-1.  Google Scholar

[1]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[2]

Shi'an Wang, N. U. Ahmed. Optimal control and stabilization of building maintenance units based on minimum principle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1713-1727. doi: 10.3934/jimo.2020041

[3]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005

[4]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[5]

Mirela Kohr, Sergey E. Mikhailov, Wolfgang L. Wendland. Dirichlet and transmission problems for anisotropic stokes and Navier-Stokes systems with L tensor coefficient under relaxed ellipticity condition. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021042

[6]

Huancheng Yao, Haiyan Yin, Changjiang Zhu. Stability of rarefaction wave for the compressible non-isentropic Navier-Stokes-Maxwell equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1297-1317. doi: 10.3934/cpaa.2021021

[7]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[8]

Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222

[9]

Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021019

[10]

Francis Hounkpe, Gregory Seregin. An approximation of forward self-similar solutions to the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021059

[11]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3343-3366. doi: 10.3934/dcds.2020408

[12]

Xin Zhong. Global strong solution and exponential decay for nonhomogeneous Navier-Stokes and magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3563-3578. doi: 10.3934/dcdsb.2020246

[13]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[14]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[15]

Chonghu Guan, Xun Li, Rui Zhou, Wenxin Zhou. Free boundary problem for an optimal investment problem with a borrowing constraint. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021049

[16]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[17]

Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3615-3627. doi: 10.3934/dcds.2021009

[18]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[19]

Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed BVP for the variable-viscosity compressible Stokes PDEs. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1103-1133. doi: 10.3934/cpaa.2021009

[20]

Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237

2019 Impact Factor: 0.953

Article outline

[Back to Top]