-
Previous Article
Lifespan of solutions to a parabolic type Kirchhoff equation with time-dependent nonlinearity
- EECT Home
- This Issue
-
Next Article
Dynamics of piezoelectric beams with magnetic effects and delay term
Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives
Guangxi University for Nationalities, Faculty of Mathematics and Physics, Nanning 530006, Guangxi Province, P. R. China |
The goal of this paper is to provide systematic approaches to study the feedback control systems governed by fractional impulsive delay evolution equations involving Caputo fractional derivatives in separable reflexive Banach spaces. This work is a continuation of previous work. We firstly give an existence result of mild solutions for the equations by applying the Banach's fixed point theorem and the Leray-Schauder alternative fixed point theorem. Next, by using the Filippove theorem and the Cesari property, we obtain the existence result of feasible pairs for the feedback control system. Finally, some applications are given to illustrate our main results.
References:
[1] |
Y.-K. Chang, J. J. Nieto and Z.-H. Zhao,
Existence results for a nondensely-defined impulsive neutral differential equation with state-dependent delay, Nonlinear Anal.: Hybrid Systems, 4 (2010), 593-599.
doi: 10.1016/j.nahs.2010.03.006. |
[2] |
F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983. |
[3] |
Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003.
doi: 10.1007/978-1-4419-9158-4. |
[4] |
G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic Systems, Addison-Weslwey, 1986. Google Scholar |
[5] |
A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
doi: 10.1007/978-0-387-21593-8. |
[6] |
M. I. Kamenskii, P. Nistri, V. V. Obukhovskii and P. Zecca,
Optimal feedback control for a semilinear evolution equation, J. Optim. Theory Appl., 82 (1994), 503-517.
doi: 10.1007/BF02192215. |
[7] |
M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter Series in Nonlinear Analysis and Applications 7, 2001.
doi: 10.1515/9783110870893. |
[8] |
N. Kosmatov,
Initial value problems of fractional order with fractional impulsive conditions, Results. Math., 63 (2013), 1289-1310.
doi: 10.1007/s00025-012-0269-3. |
[9] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, in North-Holland Mathematics Studies, vol. 204, Elservier Science B.V., Amsterdam, (2006). |
[10] |
X. J. Li and J. M. Yong, Optimal Control Theory for infinite Dimensional Systems, Birkhäuser, Boster, 1995.
doi: 10.1007/978-1-4612-4260-4. |
[11] |
Z. Liu and X. Li,
Existence and uniqueness of solutions for the nonlinear impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simulat., 18 (2013), 1362-1373.
doi: 10.1016/j.cnsns.2012.10.010. |
[12] |
Z. Liu, X. Li and J. Sun,
Controllability of nonlinear fractional impulsive evolution systems, J. Int. Equ. Appl., 25 (2013), 395-405.
doi: 10.1216/JIE-2013-25-3-395. |
[13] |
Z. Liu, S. Zeng and D. Motreanu,
Evolutionary problems driven by variational inequalities, J. Differential Equations, 260 (2016), 6787-6799.
doi: 10.1016/j.jde.2016.01.012. |
[14] |
A. L. Mees, Dynamics of Feedback Systems, John Wiley & Sons, Ltd., New York, 1981. |
[15] |
B. M. Miller and E. Ya. Rubinovich, Impulsive Control in Continuous and Discrete-Continuous Systems, Kluwer Academic/Plenum Publishers, New York, 2003.
doi: 10.1007/978-1-4615-0095-7. |
[16] |
S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics 26, Springer, New York, 2013.
doi: 10.1007/978-1-4614-4232-5. |
[17] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[18] |
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
![]() |
[19] |
R. Sakthivel, Y. Ren and N. I. Mahmudov,
On the approximate controllability of semilinear fractional differential systems, Comput. Math. Appl., 62 (2011), 1451-1459.
doi: 10.1016/j.camwa.2011.04.040. |
[20] |
X. J. Wang and C. Z. Bai, Periodic boundary value problems for nonlinear impulsive fractional differential equation, Electronic Journal of Qualitative Theory of Differential Equations, (2011), 1–15.
doi: 10.14232/ejqtde.2011.1.3. |
[21] |
J. R. Wang, M. Fečkan and Y. Zhou,
On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equ., 8 (2011), 345-362.
doi: 10.4310/DPDE.2011.v8.n4.a3. |
[22] |
J. R. Wang, M. Fečkan and Y. Zhou,
A survey on impulsive fractional differential equations, Fract. Calc. Appl. Anal., 19 (2016), 806-831.
doi: 10.1515/fca-2016-0044. |
[23] |
W. Wei and X. Xiang,
Optimal feedback control for a class of nonlinear impulsive evolution equations, Chinese J. Engrg. Math., 23 (2006), 333-342.
|
[24] |
J. R. Wang, Y. Zhou and W. Wei,
Optimal feedback control for semilinear fractional evolution equations in Banach spaces, Syst. Contr. Lett., 61 (2012), 472-476.
doi: 10.1016/j.sysconle.2011.12.009. |
[25] |
C. Xiao, B. Zeng and Z. H. Liu,
Feedback control for fractional impulsive evolution systems, Appl. Math. Comput., 268 (2015), 924-936.
doi: 10.1016/j.amc.2015.06.092. |
[26] |
H. P. Ye, J. M. Gao and Y. S. Ding,
A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.
doi: 10.1016/j.jmaa.2006.05.061. |
[27] |
B. Zeng,
Feedback control for non-stationary 3D Navier-Stokes-Voigt equations, Mathematics and Mechanics of Solids, 25 (2020), 2210-2221.
doi: 10.1177/1081286520926557. |
[28] |
B. Zeng,
Feedback control systems governed by evolution equations, Optimization, 68 (2019), 1223-1243.
doi: 10.1080/02331934.2019.1578358. |
[29] |
B. Zeng and Z. H. Liu,
Existence results for impulsive feedback control systems, Nonlinear Analysis: Hybrid Systems, 33 (2019), 1-16.
doi: 10.1016/j.nahs.2019.01.008. |
[30] |
W. Zhang and M. Fan,
Periodicity in a generalized ecological competition system governed by impulsive differential equations with delays, Math. Comput. Model., 39 (2004), 479-493.
doi: 10.1016/S0895-7177(04)90519-5. |
[31] |
Y. Zhou and F. Jiao,
Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59 (2010), 1063-1077.
doi: 10.1016/j.camwa.2009.06.026. |
[32] |
Y. Zhou, V. Vijayakumar and R. Murugesu,
Controllability for fractional evolution inclusions without compactness, Evol. Equ. Control Theor., 4 (2015), 507-524.
doi: 10.3934/eect.2015.4.507. |
show all references
References:
[1] |
Y.-K. Chang, J. J. Nieto and Z.-H. Zhao,
Existence results for a nondensely-defined impulsive neutral differential equation with state-dependent delay, Nonlinear Anal.: Hybrid Systems, 4 (2010), 593-599.
doi: 10.1016/j.nahs.2010.03.006. |
[2] |
F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983. |
[3] |
Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003.
doi: 10.1007/978-1-4419-9158-4. |
[4] |
G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic Systems, Addison-Weslwey, 1986. Google Scholar |
[5] |
A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
doi: 10.1007/978-0-387-21593-8. |
[6] |
M. I. Kamenskii, P. Nistri, V. V. Obukhovskii and P. Zecca,
Optimal feedback control for a semilinear evolution equation, J. Optim. Theory Appl., 82 (1994), 503-517.
doi: 10.1007/BF02192215. |
[7] |
M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter Series in Nonlinear Analysis and Applications 7, 2001.
doi: 10.1515/9783110870893. |
[8] |
N. Kosmatov,
Initial value problems of fractional order with fractional impulsive conditions, Results. Math., 63 (2013), 1289-1310.
doi: 10.1007/s00025-012-0269-3. |
[9] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, in North-Holland Mathematics Studies, vol. 204, Elservier Science B.V., Amsterdam, (2006). |
[10] |
X. J. Li and J. M. Yong, Optimal Control Theory for infinite Dimensional Systems, Birkhäuser, Boster, 1995.
doi: 10.1007/978-1-4612-4260-4. |
[11] |
Z. Liu and X. Li,
Existence and uniqueness of solutions for the nonlinear impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simulat., 18 (2013), 1362-1373.
doi: 10.1016/j.cnsns.2012.10.010. |
[12] |
Z. Liu, X. Li and J. Sun,
Controllability of nonlinear fractional impulsive evolution systems, J. Int. Equ. Appl., 25 (2013), 395-405.
doi: 10.1216/JIE-2013-25-3-395. |
[13] |
Z. Liu, S. Zeng and D. Motreanu,
Evolutionary problems driven by variational inequalities, J. Differential Equations, 260 (2016), 6787-6799.
doi: 10.1016/j.jde.2016.01.012. |
[14] |
A. L. Mees, Dynamics of Feedback Systems, John Wiley & Sons, Ltd., New York, 1981. |
[15] |
B. M. Miller and E. Ya. Rubinovich, Impulsive Control in Continuous and Discrete-Continuous Systems, Kluwer Academic/Plenum Publishers, New York, 2003.
doi: 10.1007/978-1-4615-0095-7. |
[16] |
S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics 26, Springer, New York, 2013.
doi: 10.1007/978-1-4614-4232-5. |
[17] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[18] |
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
![]() |
[19] |
R. Sakthivel, Y. Ren and N. I. Mahmudov,
On the approximate controllability of semilinear fractional differential systems, Comput. Math. Appl., 62 (2011), 1451-1459.
doi: 10.1016/j.camwa.2011.04.040. |
[20] |
X. J. Wang and C. Z. Bai, Periodic boundary value problems for nonlinear impulsive fractional differential equation, Electronic Journal of Qualitative Theory of Differential Equations, (2011), 1–15.
doi: 10.14232/ejqtde.2011.1.3. |
[21] |
J. R. Wang, M. Fečkan and Y. Zhou,
On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equ., 8 (2011), 345-362.
doi: 10.4310/DPDE.2011.v8.n4.a3. |
[22] |
J. R. Wang, M. Fečkan and Y. Zhou,
A survey on impulsive fractional differential equations, Fract. Calc. Appl. Anal., 19 (2016), 806-831.
doi: 10.1515/fca-2016-0044. |
[23] |
W. Wei and X. Xiang,
Optimal feedback control for a class of nonlinear impulsive evolution equations, Chinese J. Engrg. Math., 23 (2006), 333-342.
|
[24] |
J. R. Wang, Y. Zhou and W. Wei,
Optimal feedback control for semilinear fractional evolution equations in Banach spaces, Syst. Contr. Lett., 61 (2012), 472-476.
doi: 10.1016/j.sysconle.2011.12.009. |
[25] |
C. Xiao, B. Zeng and Z. H. Liu,
Feedback control for fractional impulsive evolution systems, Appl. Math. Comput., 268 (2015), 924-936.
doi: 10.1016/j.amc.2015.06.092. |
[26] |
H. P. Ye, J. M. Gao and Y. S. Ding,
A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.
doi: 10.1016/j.jmaa.2006.05.061. |
[27] |
B. Zeng,
Feedback control for non-stationary 3D Navier-Stokes-Voigt equations, Mathematics and Mechanics of Solids, 25 (2020), 2210-2221.
doi: 10.1177/1081286520926557. |
[28] |
B. Zeng,
Feedback control systems governed by evolution equations, Optimization, 68 (2019), 1223-1243.
doi: 10.1080/02331934.2019.1578358. |
[29] |
B. Zeng and Z. H. Liu,
Existence results for impulsive feedback control systems, Nonlinear Analysis: Hybrid Systems, 33 (2019), 1-16.
doi: 10.1016/j.nahs.2019.01.008. |
[30] |
W. Zhang and M. Fan,
Periodicity in a generalized ecological competition system governed by impulsive differential equations with delays, Math. Comput. Model., 39 (2004), 479-493.
doi: 10.1016/S0895-7177(04)90519-5. |
[31] |
Y. Zhou and F. Jiao,
Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59 (2010), 1063-1077.
doi: 10.1016/j.camwa.2009.06.026. |
[32] |
Y. Zhou, V. Vijayakumar and R. Murugesu,
Controllability for fractional evolution inclusions without compactness, Evol. Equ. Control Theor., 4 (2015), 507-524.
doi: 10.3934/eect.2015.4.507. |
[1] |
Iman Malmir. Caputo fractional derivative operational matrices of legendre and chebyshev wavelets in fractional delay optimal control. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021013 |
[2] |
Bernold Fiedler, Isabelle Schneider. Stabilized rapid oscillations in a delay equation: Feedback control by a small resonant delay. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1145-1185. doi: 10.3934/dcdss.2020068 |
[3] |
Yajing Li, Yejuan Wang. The existence and exponential behavior of solutions to time fractional stochastic delay evolution inclusions with nonlinear multiplicative noise and fractional noise. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2665-2697. doi: 10.3934/dcdsb.2020027 |
[4] |
Jin Liang, James H. Liu, Ti-Jun Xiao. Condensing operators and periodic solutions of infinite delay impulsive evolution equations. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 475-485. doi: 10.3934/dcdss.2017023 |
[5] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[6] |
Meng Zhang, Kaiyuan Liu, Lansun Chen, Zeyu Li. State feedback impulsive control of computer worm and virus with saturated incidence. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1465-1478. doi: 10.3934/mbe.2018067 |
[7] |
Jiaohui Xu, Tomás Caraballo. Long time behavior of fractional impulsive stochastic differential equations with infinite delay. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2719-2743. doi: 10.3934/dcdsb.2018272 |
[8] |
H. T. Liu. Impulsive effects on the existence of solutions for a fast diffusion equation. Conference Publications, 2001, 2001 (Special) : 248-253. doi: 10.3934/proc.2001.2001.248 |
[9] |
Nguyen Huy Tuan, Mokhtar Kirane, Long Dinh Le, Van Thinh Nguyen. On an inverse problem for fractional evolution equation. Evolution Equations & Control Theory, 2017, 6 (1) : 111-134. doi: 10.3934/eect.2017007 |
[10] |
Junyoung Jang, Kihoon Jang, Hee-Dae Kwon, Jeehyun Lee. Feedback control of an HBV model based on ensemble kalman filter and differential evolution. Mathematical Biosciences & Engineering, 2018, 15 (3) : 667-691. doi: 10.3934/mbe.2018030 |
[11] |
Norbert Koksch, Stefan Siegmund. Feedback control via inertial manifolds for nonautonomous evolution equations. Communications on Pure & Applied Analysis, 2011, 10 (3) : 917-936. doi: 10.3934/cpaa.2011.10.917 |
[12] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[13] |
Stepan Sorokin, Maxim Staritsyn. Feedback necessary optimality conditions for a class of terminally constrained state-linear variational problems inspired by impulsive control. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 201-210. doi: 10.3934/naco.2017014 |
[14] |
Qizhen Xiao, Binxiang Dai. Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1065-1081. doi: 10.3934/mbe.2015.12.1065 |
[15] |
Abdelkarim Kelleche, Nasser-Eddine Tatar. Existence and stabilization of a Kirchhoff moving string with a delay in the boundary or in the internal feedback. Evolution Equations & Control Theory, 2018, 7 (4) : 599-616. doi: 10.3934/eect.2018029 |
[16] |
Zhenyu Lu, Junhao Hu, Xuerong Mao. Stabilisation by delay feedback control for highly nonlinear hybrid stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4099-4116. doi: 10.3934/dcdsb.2019052 |
[17] |
Baskar Sundaravadivoo. Controllability analysis of nonlinear fractional order differential systems with state delay and non-instantaneous impulsive effects. Discrete & Continuous Dynamical Systems - S, 2020, 13 (9) : 2561-2573. doi: 10.3934/dcdss.2020138 |
[18] |
Qiang Li, Mei Wei. Existence and asymptotic stability of periodic solutions for neutral evolution equations with delay. Evolution Equations & Control Theory, 2020, 9 (3) : 753-772. doi: 10.3934/eect.2020032 |
[19] |
Tomás Caraballo, M. J. Garrido-Atienza, B. Schmalfuss. Existence of exponentially attracting stationary solutions for delay evolution equations. Discrete & Continuous Dynamical Systems, 2007, 18 (2&3) : 271-293. doi: 10.3934/dcds.2007.18.271 |
[20] |
Hayat Zouiten, Ali Boutoulout, Delfim F. M. Torres. Regional enlarged observability of Caputo fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 1017-1029. doi: 10.3934/dcdss.2020060 |
2019 Impact Factor: 0.953
Tools
Metrics
Other articles
by authors
[Back to Top]