doi: 10.3934/eect.2021001
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives

Guangxi University for Nationalities, Faculty of Mathematics and Physics, Nanning 530006, Guangxi Province, P. R. China

* Corresponding author: Biao Zeng

Received  May 2020 Revised  October 2020 Early access January 2021

Fund Project: The first author is supported by the Natural Science Foundation of Guangxi Province grant No. 2019GXNSFBA185005, the Start-up Project of Scientific Research on Introducing talents at school level in Guangxi University for Nationalities grant No. 2019KJQD04 and the Xiangsihu Young Scholars Innovative Research Team of Guangxi University for Nationalities grant No. 2019RSCXSHQN02

The goal of this paper is to provide systematic approaches to study the feedback control systems governed by fractional impulsive delay evolution equations involving Caputo fractional derivatives in separable reflexive Banach spaces. This work is a continuation of previous work. We firstly give an existence result of mild solutions for the equations by applying the Banach's fixed point theorem and the Leray-Schauder alternative fixed point theorem. Next, by using the Filippove theorem and the Cesari property, we obtain the existence result of feasible pairs for the feedback control system. Finally, some applications are given to illustrate our main results.

Citation: Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, doi: 10.3934/eect.2021001
References:
[1]

Y.-K. ChangJ. J. Nieto and Z.-H. Zhao, Existence results for a nondensely-defined impulsive neutral differential equation with state-dependent delay, Nonlinear Anal.: Hybrid Systems, 4 (2010), 593-599.  doi: 10.1016/j.nahs.2010.03.006.  Google Scholar

[2]

F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.  Google Scholar

[3]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003. doi: 10.1007/978-1-4419-9158-4.  Google Scholar

[4]

G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic Systems, Addison-Weslwey, 1986. Google Scholar

[5]

A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21593-8.  Google Scholar

[6]

M. I. KamenskiiP. NistriV. V. Obukhovskii and P. Zecca, Optimal feedback control for a semilinear evolution equation, J. Optim. Theory Appl., 82 (1994), 503-517.  doi: 10.1007/BF02192215.  Google Scholar

[7]

M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter Series in Nonlinear Analysis and Applications 7, 2001. doi: 10.1515/9783110870893.  Google Scholar

[8]

N. Kosmatov, Initial value problems of fractional order with fractional impulsive conditions, Results. Math., 63 (2013), 1289-1310.  doi: 10.1007/s00025-012-0269-3.  Google Scholar

[9]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, in North-Holland Mathematics Studies, vol. 204, Elservier Science B.V., Amsterdam, (2006).  Google Scholar

[10]

X. J. Li and J. M. Yong, Optimal Control Theory for infinite Dimensional Systems, Birkhäuser, Boster, 1995. doi: 10.1007/978-1-4612-4260-4.  Google Scholar

[11]

Z. Liu and X. Li, Existence and uniqueness of solutions for the nonlinear impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simulat., 18 (2013), 1362-1373.  doi: 10.1016/j.cnsns.2012.10.010.  Google Scholar

[12]

Z. LiuX. Li and J. Sun, Controllability of nonlinear fractional impulsive evolution systems, J. Int. Equ. Appl., 25 (2013), 395-405.  doi: 10.1216/JIE-2013-25-3-395.  Google Scholar

[13]

Z. LiuS. Zeng and D. Motreanu, Evolutionary problems driven by variational inequalities, J. Differential Equations, 260 (2016), 6787-6799.  doi: 10.1016/j.jde.2016.01.012.  Google Scholar

[14]

A. L. Mees, Dynamics of Feedback Systems, John Wiley & Sons, Ltd., New York, 1981.  Google Scholar

[15]

B. M. Miller and E. Ya. Rubinovich, Impulsive Control in Continuous and Discrete-Continuous Systems, Kluwer Academic/Plenum Publishers, New York, 2003. doi: 10.1007/978-1-4615-0095-7.  Google Scholar

[16]

S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics 26, Springer, New York, 2013. doi: 10.1007/978-1-4614-4232-5.  Google Scholar

[17]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[18] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.   Google Scholar
[19]

R. SakthivelY. Ren and N. I. Mahmudov, On the approximate controllability of semilinear fractional differential systems, Comput. Math. Appl., 62 (2011), 1451-1459.  doi: 10.1016/j.camwa.2011.04.040.  Google Scholar

[20]

X. J. Wang and C. Z. Bai, Periodic boundary value problems for nonlinear impulsive fractional differential equation, Electronic Journal of Qualitative Theory of Differential Equations, (2011), 1–15. doi: 10.14232/ejqtde.2011.1.3.  Google Scholar

[21]

J. R. WangM. Fečkan and Y. Zhou, On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equ., 8 (2011), 345-362.  doi: 10.4310/DPDE.2011.v8.n4.a3.  Google Scholar

[22]

J. R. WangM. Fečkan and Y. Zhou, A survey on impulsive fractional differential equations, Fract. Calc. Appl. Anal., 19 (2016), 806-831.  doi: 10.1515/fca-2016-0044.  Google Scholar

[23]

W. Wei and X. Xiang, Optimal feedback control for a class of nonlinear impulsive evolution equations, Chinese J. Engrg. Math., 23 (2006), 333-342.   Google Scholar

[24]

J. R. WangY. Zhou and W. Wei, Optimal feedback control for semilinear fractional evolution equations in Banach spaces, Syst. Contr. Lett., 61 (2012), 472-476.  doi: 10.1016/j.sysconle.2011.12.009.  Google Scholar

[25]

C. XiaoB. Zeng and Z. H. Liu, Feedback control for fractional impulsive evolution systems, Appl. Math. Comput., 268 (2015), 924-936.  doi: 10.1016/j.amc.2015.06.092.  Google Scholar

[26]

H. P. YeJ. M. Gao and Y. S. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.  doi: 10.1016/j.jmaa.2006.05.061.  Google Scholar

[27]

B. Zeng, Feedback control for non-stationary 3D Navier-Stokes-Voigt equations, Mathematics and Mechanics of Solids, 25 (2020), 2210-2221.  doi: 10.1177/1081286520926557.  Google Scholar

[28]

B. Zeng, Feedback control systems governed by evolution equations, Optimization, 68 (2019), 1223-1243.  doi: 10.1080/02331934.2019.1578358.  Google Scholar

[29]

B. Zeng and Z. H. Liu, Existence results for impulsive feedback control systems, Nonlinear Analysis: Hybrid Systems, 33 (2019), 1-16.  doi: 10.1016/j.nahs.2019.01.008.  Google Scholar

[30]

W. Zhang and M. Fan, Periodicity in a generalized ecological competition system governed by impulsive differential equations with delays, Math. Comput. Model., 39 (2004), 479-493.  doi: 10.1016/S0895-7177(04)90519-5.  Google Scholar

[31]

Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59 (2010), 1063-1077.  doi: 10.1016/j.camwa.2009.06.026.  Google Scholar

[32]

Y. ZhouV. Vijayakumar and R. Murugesu, Controllability for fractional evolution inclusions without compactness, Evol. Equ. Control Theor., 4 (2015), 507-524.  doi: 10.3934/eect.2015.4.507.  Google Scholar

show all references

References:
[1]

Y.-K. ChangJ. J. Nieto and Z.-H. Zhao, Existence results for a nondensely-defined impulsive neutral differential equation with state-dependent delay, Nonlinear Anal.: Hybrid Systems, 4 (2010), 593-599.  doi: 10.1016/j.nahs.2010.03.006.  Google Scholar

[2]

F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.  Google Scholar

[3]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003. doi: 10.1007/978-1-4419-9158-4.  Google Scholar

[4]

G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic Systems, Addison-Weslwey, 1986. Google Scholar

[5]

A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21593-8.  Google Scholar

[6]

M. I. KamenskiiP. NistriV. V. Obukhovskii and P. Zecca, Optimal feedback control for a semilinear evolution equation, J. Optim. Theory Appl., 82 (1994), 503-517.  doi: 10.1007/BF02192215.  Google Scholar

[7]

M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter Series in Nonlinear Analysis and Applications 7, 2001. doi: 10.1515/9783110870893.  Google Scholar

[8]

N. Kosmatov, Initial value problems of fractional order with fractional impulsive conditions, Results. Math., 63 (2013), 1289-1310.  doi: 10.1007/s00025-012-0269-3.  Google Scholar

[9]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, in North-Holland Mathematics Studies, vol. 204, Elservier Science B.V., Amsterdam, (2006).  Google Scholar

[10]

X. J. Li and J. M. Yong, Optimal Control Theory for infinite Dimensional Systems, Birkhäuser, Boster, 1995. doi: 10.1007/978-1-4612-4260-4.  Google Scholar

[11]

Z. Liu and X. Li, Existence and uniqueness of solutions for the nonlinear impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simulat., 18 (2013), 1362-1373.  doi: 10.1016/j.cnsns.2012.10.010.  Google Scholar

[12]

Z. LiuX. Li and J. Sun, Controllability of nonlinear fractional impulsive evolution systems, J. Int. Equ. Appl., 25 (2013), 395-405.  doi: 10.1216/JIE-2013-25-3-395.  Google Scholar

[13]

Z. LiuS. Zeng and D. Motreanu, Evolutionary problems driven by variational inequalities, J. Differential Equations, 260 (2016), 6787-6799.  doi: 10.1016/j.jde.2016.01.012.  Google Scholar

[14]

A. L. Mees, Dynamics of Feedback Systems, John Wiley & Sons, Ltd., New York, 1981.  Google Scholar

[15]

B. M. Miller and E. Ya. Rubinovich, Impulsive Control in Continuous and Discrete-Continuous Systems, Kluwer Academic/Plenum Publishers, New York, 2003. doi: 10.1007/978-1-4615-0095-7.  Google Scholar

[16]

S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics 26, Springer, New York, 2013. doi: 10.1007/978-1-4614-4232-5.  Google Scholar

[17]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[18] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.   Google Scholar
[19]

R. SakthivelY. Ren and N. I. Mahmudov, On the approximate controllability of semilinear fractional differential systems, Comput. Math. Appl., 62 (2011), 1451-1459.  doi: 10.1016/j.camwa.2011.04.040.  Google Scholar

[20]

X. J. Wang and C. Z. Bai, Periodic boundary value problems for nonlinear impulsive fractional differential equation, Electronic Journal of Qualitative Theory of Differential Equations, (2011), 1–15. doi: 10.14232/ejqtde.2011.1.3.  Google Scholar

[21]

J. R. WangM. Fečkan and Y. Zhou, On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equ., 8 (2011), 345-362.  doi: 10.4310/DPDE.2011.v8.n4.a3.  Google Scholar

[22]

J. R. WangM. Fečkan and Y. Zhou, A survey on impulsive fractional differential equations, Fract. Calc. Appl. Anal., 19 (2016), 806-831.  doi: 10.1515/fca-2016-0044.  Google Scholar

[23]

W. Wei and X. Xiang, Optimal feedback control for a class of nonlinear impulsive evolution equations, Chinese J. Engrg. Math., 23 (2006), 333-342.   Google Scholar

[24]

J. R. WangY. Zhou and W. Wei, Optimal feedback control for semilinear fractional evolution equations in Banach spaces, Syst. Contr. Lett., 61 (2012), 472-476.  doi: 10.1016/j.sysconle.2011.12.009.  Google Scholar

[25]

C. XiaoB. Zeng and Z. H. Liu, Feedback control for fractional impulsive evolution systems, Appl. Math. Comput., 268 (2015), 924-936.  doi: 10.1016/j.amc.2015.06.092.  Google Scholar

[26]

H. P. YeJ. M. Gao and Y. S. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.  doi: 10.1016/j.jmaa.2006.05.061.  Google Scholar

[27]

B. Zeng, Feedback control for non-stationary 3D Navier-Stokes-Voigt equations, Mathematics and Mechanics of Solids, 25 (2020), 2210-2221.  doi: 10.1177/1081286520926557.  Google Scholar

[28]

B. Zeng, Feedback control systems governed by evolution equations, Optimization, 68 (2019), 1223-1243.  doi: 10.1080/02331934.2019.1578358.  Google Scholar

[29]

B. Zeng and Z. H. Liu, Existence results for impulsive feedback control systems, Nonlinear Analysis: Hybrid Systems, 33 (2019), 1-16.  doi: 10.1016/j.nahs.2019.01.008.  Google Scholar

[30]

W. Zhang and M. Fan, Periodicity in a generalized ecological competition system governed by impulsive differential equations with delays, Math. Comput. Model., 39 (2004), 479-493.  doi: 10.1016/S0895-7177(04)90519-5.  Google Scholar

[31]

Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59 (2010), 1063-1077.  doi: 10.1016/j.camwa.2009.06.026.  Google Scholar

[32]

Y. ZhouV. Vijayakumar and R. Murugesu, Controllability for fractional evolution inclusions without compactness, Evol. Equ. Control Theor., 4 (2015), 507-524.  doi: 10.3934/eect.2015.4.507.  Google Scholar

[1]

Miloud Moussai. Application of the bernstein polynomials for solving the nonlinear fractional type Volterra integro-differential equation with caputo fractional derivatives. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021021

[2]

Iman Malmir. Caputo fractional derivative operational matrices of Legendre and Chebyshev wavelets in fractional delay optimal control. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021013

[3]

Bernold Fiedler, Isabelle Schneider. Stabilized rapid oscillations in a delay equation: Feedback control by a small resonant delay. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1145-1185. doi: 10.3934/dcdss.2020068

[4]

Yajing Li, Yejuan Wang. The existence and exponential behavior of solutions to time fractional stochastic delay evolution inclusions with nonlinear multiplicative noise and fractional noise. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2665-2697. doi: 10.3934/dcdsb.2020027

[5]

Jin Liang, James H. Liu, Ti-Jun Xiao. Condensing operators and periodic solutions of infinite delay impulsive evolution equations. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 475-485. doi: 10.3934/dcdss.2017023

[6]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[7]

Meng Zhang, Kaiyuan Liu, Lansun Chen, Zeyu Li. State feedback impulsive control of computer worm and virus with saturated incidence. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1465-1478. doi: 10.3934/mbe.2018067

[8]

Jiaohui Xu, Tomás Caraballo. Long time behavior of fractional impulsive stochastic differential equations with infinite delay. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2719-2743. doi: 10.3934/dcdsb.2018272

[9]

H. T. Liu. Impulsive effects on the existence of solutions for a fast diffusion equation. Conference Publications, 2001, 2001 (Special) : 248-253. doi: 10.3934/proc.2001.2001.248

[10]

Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad, Saed F. Mallak, Hussam Alrabaiah. Lyapunov type inequality in the frame of generalized Caputo derivatives. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2335-2355. doi: 10.3934/dcdss.2020212

[11]

Nguyen Huy Tuan, Mokhtar Kirane, Long Dinh Le, Van Thinh Nguyen. On an inverse problem for fractional evolution equation. Evolution Equations & Control Theory, 2017, 6 (1) : 111-134. doi: 10.3934/eect.2017007

[12]

Junyoung Jang, Kihoon Jang, Hee-Dae Kwon, Jeehyun Lee. Feedback control of an HBV model based on ensemble kalman filter and differential evolution. Mathematical Biosciences & Engineering, 2018, 15 (3) : 667-691. doi: 10.3934/mbe.2018030

[13]

Norbert Koksch, Stefan Siegmund. Feedback control via inertial manifolds for nonautonomous evolution equations. Communications on Pure & Applied Analysis, 2011, 10 (3) : 917-936. doi: 10.3934/cpaa.2011.10.917

[14]

Kaouther Bouchama, Yacine Arioua, Abdelkrim Merzougui. The Numerical Solution of the space-time fractional diffusion equation involving the Caputo-Katugampola fractional derivative. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021026

[15]

Stepan Sorokin, Maxim Staritsyn. Feedback necessary optimality conditions for a class of terminally constrained state-linear variational problems inspired by impulsive control. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 201-210. doi: 10.3934/naco.2017014

[16]

Qizhen Xiao, Binxiang Dai. Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1065-1081. doi: 10.3934/mbe.2015.12.1065

[17]

Abdelkarim Kelleche, Nasser-Eddine Tatar. Existence and stabilization of a Kirchhoff moving string with a delay in the boundary or in the internal feedback. Evolution Equations & Control Theory, 2018, 7 (4) : 599-616. doi: 10.3934/eect.2018029

[18]

Zhenyu Lu, Junhao Hu, Xuerong Mao. Stabilisation by delay feedback control for highly nonlinear hybrid stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4099-4116. doi: 10.3934/dcdsb.2019052

[19]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3659-3683. doi: 10.3934/dcdss.2021023

[20]

Baskar Sundaravadivoo. Controllability analysis of nonlinear fractional order differential systems with state delay and non-instantaneous impulsive effects. Discrete & Continuous Dynamical Systems - S, 2020, 13 (9) : 2561-2573. doi: 10.3934/dcdss.2020138

2020 Impact Factor: 1.081

Article outline

[Back to Top]