-
Previous Article
Conditional regularity for the 3D Navier-Stokes equations in terms of the middle eigenvalue of the strain tensor
- EECT Home
- This Issue
-
Next Article
Decay rate of global solutions to three dimensional generalized MHD system
A canonical model of the one-dimensional dynamical Dirac system with boundary control
1. | St. Petersburg Department of Steklov Mathematical Institute, Fontanka 27, St. Petersburg, 191023 Russia |
2. | St. Petersburg State University, 7–9 Universitetskaya nab., St. Petersburg, 199034 Russia |
$ \Sigma $ |
$ \begin{align*} & iu_t+i\sigma_{\!_3}\, u_x+Vu = 0, \, \, \, \, x, t>0;\, \, \, u|_{t = 0} = 0, \, \, x>0;\, \, \, \, u_1|_{x = 0} = f, \, \, t>0, \end{align*} $ |
$ \sigma_{\!_3} = \begin{pmatrix}1&0 \\ 0&-1\end{pmatrix} $ |
$ V = \begin{pmatrix}0&p\\ \bar p&0\end{pmatrix} $ |
$ p = p(x) $ |
$ u = \begin{pmatrix}u_1^f(x, t) \\ u_2^f(x, t)\end{pmatrix} $ |
$ \mathscr H = L_2(\mathbb R_+;\mathbb C^2) $ |
$ f\in\mathscr F = L_2([0, \infty);\mathbb C) $ |
$ \Sigma $ |
$ \mathscr U = {\rm span}_{t>0}\{u^f(\cdot, t)\, |\, \, f\in \mathscr F\} $ |
$ \mathscr H $ |
$ \Sigma_u $ |
$ \Sigma_a $ |
$ L_2(\mathbb R_+;\mathbb C) $ |
$ \Sigma_u $ |
$ \Sigma_a $ |
$ \overline{\mathscr U} $ |
$ \mathscr U^t = \{u^f(\cdot, t)\, |\, \, f\in \mathscr F\} $ |
$ \Sigma_a $ |
$ \Sigma $ |
$ \Sigma $ |
$ \Sigma_a $ |
References:
[1] |
M. I. Belishev,
A unitary invariant of a semi-bounded operator in reconstruction of manifolds, Journal of Operator Theory, 69 (2013), 299-326.
doi: 10.7900/jot.2010oct22.1925. |
[2] |
M. I. Belishev, Boundary control method, in Encyclopedia of Applied and Computational Mathematics, (2015), 142–146.
doi: 10.1007/978-3-540-70529-1_7. |
[3] |
M. I. Belishev,
Boundary control and tomography of Riemannian manifolds, Russian Mathematical Surveys, 72 (2017), 581-644.
doi: 10.4213/rm9768. |
[4] |
M. I. Belishev and V. S. Mikhaylov, Inverse problem for one-dimensional dynamical Dirac system (BC-method), Inverse Problems, 30 (2014), 125013, 1–26.
doi: 10.1088/0266-5611/30/12/125013. |
[5] |
M. I. Belishev and S. A. Simonov,
Wave model of the Sturm-Liouville operator on the half-line, St. Petersburg Math. J., 29 (2018), 227-248.
doi: 10.1090/spmj/1491. |
[6] |
M. I. Belishev and S. A. Simonov,
A wave model of metric spaces, Functional Analysis and Its Applications, 53 (2019), 79-85.
doi: 10.1134/S0016266319020011. |
[7] |
M. I. Belishev and S. A. Simonov, A wave model of metric space with measure, Sbornik: Mathematics, 211 (2020), 521-538. Google Scholar |
[8] |
M. I. Belishev and S. A. Simonov, On evolutionary first-order dynamical system with boundary control, Zapiski Nauchnykh Seminarov POMI, in Russian, 483 (2019), 41–54. |
[9] |
I. C. Gohberg and M. G. Krein, Theory and Applications of Volterra Operators in Hilbert Space, Transl. of Monographs No. 24, Amer. Math. Soc, Providence. Rhode Island, 1970. |
[10] |
R. E. Kalman, P. L. Falb and M. A. Arbib, Topics in Mathematical System Theory, New-York: McGraw-Hill, 1969. |
show all references
References:
[1] |
M. I. Belishev,
A unitary invariant of a semi-bounded operator in reconstruction of manifolds, Journal of Operator Theory, 69 (2013), 299-326.
doi: 10.7900/jot.2010oct22.1925. |
[2] |
M. I. Belishev, Boundary control method, in Encyclopedia of Applied and Computational Mathematics, (2015), 142–146.
doi: 10.1007/978-3-540-70529-1_7. |
[3] |
M. I. Belishev,
Boundary control and tomography of Riemannian manifolds, Russian Mathematical Surveys, 72 (2017), 581-644.
doi: 10.4213/rm9768. |
[4] |
M. I. Belishev and V. S. Mikhaylov, Inverse problem for one-dimensional dynamical Dirac system (BC-method), Inverse Problems, 30 (2014), 125013, 1–26.
doi: 10.1088/0266-5611/30/12/125013. |
[5] |
M. I. Belishev and S. A. Simonov,
Wave model of the Sturm-Liouville operator on the half-line, St. Petersburg Math. J., 29 (2018), 227-248.
doi: 10.1090/spmj/1491. |
[6] |
M. I. Belishev and S. A. Simonov,
A wave model of metric spaces, Functional Analysis and Its Applications, 53 (2019), 79-85.
doi: 10.1134/S0016266319020011. |
[7] |
M. I. Belishev and S. A. Simonov, A wave model of metric space with measure, Sbornik: Mathematics, 211 (2020), 521-538. Google Scholar |
[8] |
M. I. Belishev and S. A. Simonov, On evolutionary first-order dynamical system with boundary control, Zapiski Nauchnykh Seminarov POMI, in Russian, 483 (2019), 41–54. |
[9] |
I. C. Gohberg and M. G. Krein, Theory and Applications of Volterra Operators in Hilbert Space, Transl. of Monographs No. 24, Amer. Math. Soc, Providence. Rhode Island, 1970. |
[10] |
R. E. Kalman, P. L. Falb and M. A. Arbib, Topics in Mathematical System Theory, New-York: McGraw-Hill, 1969. |
[1] |
Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021004 |
[2] |
Jérôme Lohéac, Chaouki N. E. Boultifat, Philippe Chevrel, Mohamed Yagoubi. Exact noise cancellation for 1d-acoustic propagation systems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020055 |
[3] |
Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327 |
[4] |
Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005 |
[5] |
Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264 |
[6] |
Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299 |
[7] |
Jakub Kantner, Michal Beneš. Mathematical model of signal propagation in excitable media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 935-951. doi: 10.3934/dcdss.2020382 |
[8] |
Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278 |
[9] |
Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020401 |
[10] |
Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020049 |
[11] |
Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002 |
[12] |
Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054 |
[13] |
Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021022 |
[14] |
Sujit Kumar Samanta, Rakesh Nandi. Analysis of $GI^{[X]}/D$-$MSP/1/\infty$ queue using $RG$-factorization. Journal of Industrial & Management Optimization, 2021, 17 (2) : 549-573. doi: 10.3934/jimo.2019123 |
[15] |
Chang-Yeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 315-339. doi: 10.3934/dcds.2009.23.315 |
[16] |
Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2021, 17 (1) : 1-28. doi: 10.3934/jimo.2019096 |
[17] |
Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062 |
[18] |
Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297 |
[19] |
Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020357 |
[20] |
Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020399 |
2019 Impact Factor: 0.953
Tools
Metrics
Other articles
by authors
[Back to Top]