Advanced Search
Article Contents
Article Contents

# A canonical model of the one-dimensional dynamical Dirac system with boundary control

•

The first author is supported by the RFBR grant 20-01 627A and Volkswagen Foundation. The second author is supported by the RFBR grant 19-01-00565A

• The one-dimensional Dirac dynamical system $\Sigma$ is

\begin{align*} & iu_t+i\sigma_{\!_3}\, u_x+Vu = 0, \, \, \, \, x, t>0;\, \, \, u|_{t = 0} = 0, \, \, x>0;\, \, \, \, u_1|_{x = 0} = f, \, \, t>0, \end{align*}

where $\sigma_{\!_3} = \begin{pmatrix}1&0 \\ 0&-1\end{pmatrix}$ is the Pauli matrix; $V = \begin{pmatrix}0&p\\ \bar p&0\end{pmatrix}$ with $p = p(x)$ is a potential; $u = \begin{pmatrix}u_1^f(x, t) \\ u_2^f(x, t)\end{pmatrix}$ is the trajectory in $\mathscr H = L_2(\mathbb R_+;\mathbb C^2)$; $f\in\mathscr F = L_2([0, \infty);\mathbb C)$ is a boundary control. System $\Sigma$ is not controllable: the total reachable set $\mathscr U = {\rm span}_{t>0}\{u^f(\cdot, t)\, |\, \, f\in \mathscr F\}$ is not dense in $\mathscr H$, but contains a controllable part $\Sigma_u$. We construct a dynamical system $\Sigma_a$, which is controllable in $L_2(\mathbb R_+;\mathbb C)$ and connected with $\Sigma_u$ via a unitary transform. The construction is based on geometrical optics relations: trajectories of $\Sigma_a$ are composed of jump amplitudes that arise as a result of projecting in $\overline{\mathscr U}$ onto the reachable sets $\mathscr U^t = \{u^f(\cdot, t)\, |\, \, f\in \mathscr F\}$. System $\Sigma_a$, which we call the amplitude model of the original $\Sigma$, has the same input/output correspondence as system $\Sigma$. As such, $\Sigma_a$ provides a canonical completely reachable realization of the Dirac system.

Mathematics Subject Classification: Primary: 35B30, 47N70, 46N20; Secondary: 93B28.

 Citation:

•  [1] M. I. Belishev, A unitary invariant of a semi-bounded operator in reconstruction of manifolds, Journal of Operator Theory, 69 (2013), 299-326.  doi: 10.7900/jot.2010oct22.1925. [2] M. I. Belishev, Boundary control method, in Encyclopedia of Applied and Computational Mathematics, (2015), 142–146. doi: 10.1007/978-3-540-70529-1_7. [3] M. I. Belishev, Boundary control and tomography of Riemannian manifolds, Russian Mathematical Surveys, 72 (2017), 581-644.  doi: 10.4213/rm9768. [4] M. I. Belishev and V. S. Mikhaylov, Inverse problem for one-dimensional dynamical Dirac system (BC-method), Inverse Problems, 30 (2014), 125013, 1–26. doi: 10.1088/0266-5611/30/12/125013. [5] M. I. Belishev and S. A. Simonov, Wave model of the Sturm-Liouville operator on the half-line, St. Petersburg Math. J., 29 (2018), 227-248.  doi: 10.1090/spmj/1491. [6] M. I. Belishev and S. A. Simonov, A wave model of metric spaces, Functional Analysis and Its Applications, 53 (2019), 79-85.  doi: 10.1134/S0016266319020011. [7] M. I. Belishev and S. A. Simonov, A wave model of metric space with measure, Sbornik: Mathematics, 211 (2020), 521-538. [8] M. I. Belishev and S. A. Simonov, On evolutionary first-order dynamical system with boundary control, Zapiski Nauchnykh Seminarov POMI, in Russian, 483 (2019), 41–54. [9] I. C. Gohberg and M. G. Krein, Theory and Applications of Volterra Operators in Hilbert Space, Transl. of Monographs No. 24, Amer. Math. Soc, Providence. Rhode Island, 1970. [10] R. E. Kalman, P. L. Falb and M. A. Arbib, Topics in Mathematical System Theory, New-York: McGraw-Hill, 1969.

## Article Metrics

HTML views(1814) PDF downloads(298) Cited by(0)

## Other Articles By Authors

• on this site
• on Google Scholar

### Catalog

/

DownLoad:  Full-Size Img  PowerPoint