• Previous Article
    Conditional regularity for the 3D Navier-Stokes equations in terms of the middle eigenvalue of the strain tensor
  • EECT Home
  • This Issue
  • Next Article
    Decay rate of global solutions to three dimensional generalized MHD system
doi: 10.3934/eect.2021003

A canonical model of the one-dimensional dynamical Dirac system with boundary control

1. 

St. Petersburg Department of Steklov Mathematical Institute, Fontanka 27, St. Petersburg, 191023 Russia

2. 

St. Petersburg State University, 7–9 Universitetskaya nab., St. Petersburg, 199034 Russia

 

Received  July 2020 Published  January 2021

Fund Project: The first author is supported by the RFBR grant 20-01 627A and Volkswagen Foundation. The second author is supported by the RFBR grant 19-01-00565A

The one-dimensional Dirac dynamical system
$ \Sigma $
is
$ \begin{align*} & iu_t+i\sigma_{\!_3}\, u_x+Vu = 0, \, \, \, \, x, t>0;\, \, \, u|_{t = 0} = 0, \, \, x>0;\, \, \, \, u_1|_{x = 0} = f, \, \, t>0, \end{align*} $
where
$ \sigma_{\!_3} = \begin{pmatrix}1&0 \\ 0&-1\end{pmatrix} $
is the Pauli matrix;
$ V = \begin{pmatrix}0&p\\ \bar p&0\end{pmatrix} $
with
$ p = p(x) $
is a potential;
$ u = \begin{pmatrix}u_1^f(x, t) \\ u_2^f(x, t)\end{pmatrix} $
is the trajectory in
$ \mathscr H = L_2(\mathbb R_+;\mathbb C^2) $
;
$ f\in\mathscr F = L_2([0, \infty);\mathbb C) $
is a boundary control. System
$ \Sigma $
is not controllable: the total reachable set
$ \mathscr U = {\rm span}_{t>0}\{u^f(\cdot, t)\, |\, \, f\in \mathscr F\} $
is not dense in
$ \mathscr H $
, but contains a controllable part
$ \Sigma_u $
. We construct a dynamical system
$ \Sigma_a $
, which is controllable in
$ L_2(\mathbb R_+;\mathbb C) $
and connected with
$ \Sigma_u $
via a unitary transform. The construction is based on geometrical optics relations: trajectories of
$ \Sigma_a $
are composed of jump amplitudes that arise as a result of projecting in
$ \overline{\mathscr U} $
onto the reachable sets
$ \mathscr U^t = \{u^f(\cdot, t)\, |\, \, f\in \mathscr F\} $
. System
$ \Sigma_a $
, which we call the amplitude model of the original
$ \Sigma $
, has the same input/output correspondence as system
$ \Sigma $
. As such,
$ \Sigma_a $
provides a canonical completely reachable realization of the Dirac system.
Citation: Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, doi: 10.3934/eect.2021003
References:
[1]

M. I. Belishev, A unitary invariant of a semi-bounded operator in reconstruction of manifolds, Journal of Operator Theory, 69 (2013), 299-326.  doi: 10.7900/jot.2010oct22.1925.  Google Scholar

[2]

M. I. Belishev, Boundary control method, in Encyclopedia of Applied and Computational Mathematics, (2015), 142–146. doi: 10.1007/978-3-540-70529-1_7.  Google Scholar

[3]

M. I. Belishev, Boundary control and tomography of Riemannian manifolds, Russian Mathematical Surveys, 72 (2017), 581-644.  doi: 10.4213/rm9768.  Google Scholar

[4]

M. I. Belishev and V. S. Mikhaylov, Inverse problem for one-dimensional dynamical Dirac system (BC-method), Inverse Problems, 30 (2014), 125013, 1–26. doi: 10.1088/0266-5611/30/12/125013.  Google Scholar

[5]

M. I. Belishev and S. A. Simonov, Wave model of the Sturm-Liouville operator on the half-line, St. Petersburg Math. J., 29 (2018), 227-248.  doi: 10.1090/spmj/1491.  Google Scholar

[6]

M. I. Belishev and S. A. Simonov, A wave model of metric spaces, Functional Analysis and Its Applications, 53 (2019), 79-85.  doi: 10.1134/S0016266319020011.  Google Scholar

[7]

M. I. Belishev and S. A. Simonov, A wave model of metric space with measure, Sbornik: Mathematics, 211 (2020), 521-538.   Google Scholar

[8]

M. I. Belishev and S. A. Simonov, On evolutionary first-order dynamical system with boundary control, Zapiski Nauchnykh Seminarov POMI, in Russian, 483 (2019), 41–54.  Google Scholar

[9]

I. C. Gohberg and M. G. Krein, Theory and Applications of Volterra Operators in Hilbert Space, Transl. of Monographs No. 24, Amer. Math. Soc, Providence. Rhode Island, 1970.  Google Scholar

[10]

R. E. Kalman, P. L. Falb and M. A. Arbib, Topics in Mathematical System Theory, New-York: McGraw-Hill, 1969.  Google Scholar

show all references

References:
[1]

M. I. Belishev, A unitary invariant of a semi-bounded operator in reconstruction of manifolds, Journal of Operator Theory, 69 (2013), 299-326.  doi: 10.7900/jot.2010oct22.1925.  Google Scholar

[2]

M. I. Belishev, Boundary control method, in Encyclopedia of Applied and Computational Mathematics, (2015), 142–146. doi: 10.1007/978-3-540-70529-1_7.  Google Scholar

[3]

M. I. Belishev, Boundary control and tomography of Riemannian manifolds, Russian Mathematical Surveys, 72 (2017), 581-644.  doi: 10.4213/rm9768.  Google Scholar

[4]

M. I. Belishev and V. S. Mikhaylov, Inverse problem for one-dimensional dynamical Dirac system (BC-method), Inverse Problems, 30 (2014), 125013, 1–26. doi: 10.1088/0266-5611/30/12/125013.  Google Scholar

[5]

M. I. Belishev and S. A. Simonov, Wave model of the Sturm-Liouville operator on the half-line, St. Petersburg Math. J., 29 (2018), 227-248.  doi: 10.1090/spmj/1491.  Google Scholar

[6]

M. I. Belishev and S. A. Simonov, A wave model of metric spaces, Functional Analysis and Its Applications, 53 (2019), 79-85.  doi: 10.1134/S0016266319020011.  Google Scholar

[7]

M. I. Belishev and S. A. Simonov, A wave model of metric space with measure, Sbornik: Mathematics, 211 (2020), 521-538.   Google Scholar

[8]

M. I. Belishev and S. A. Simonov, On evolutionary first-order dynamical system with boundary control, Zapiski Nauchnykh Seminarov POMI, in Russian, 483 (2019), 41–54.  Google Scholar

[9]

I. C. Gohberg and M. G. Krein, Theory and Applications of Volterra Operators in Hilbert Space, Transl. of Monographs No. 24, Amer. Math. Soc, Providence. Rhode Island, 1970.  Google Scholar

[10]

R. E. Kalman, P. L. Falb and M. A. Arbib, Topics in Mathematical System Theory, New-York: McGraw-Hill, 1969.  Google Scholar

[1]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[2]

Jérôme Lohéac, Chaouki N. E. Boultifat, Philippe Chevrel, Mohamed Yagoubi. Exact noise cancellation for 1d-acoustic propagation systems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020055

[3]

Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327

[4]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[5]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[6]

Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299

[7]

Jakub Kantner, Michal Beneš. Mathematical model of signal propagation in excitable media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 935-951. doi: 10.3934/dcdss.2020382

[8]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[9]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[10]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[11]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[12]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[13]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[14]

Sujit Kumar Samanta, Rakesh Nandi. Analysis of $GI^{[X]}/D$-$MSP/1/\infty$ queue using $RG$-factorization. Journal of Industrial & Management Optimization, 2021, 17 (2) : 549-573. doi: 10.3934/jimo.2019123

[15]

Chang-Yeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 315-339. doi: 10.3934/dcds.2009.23.315

[16]

Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2021, 17 (1) : 1-28. doi: 10.3934/jimo.2019096

[17]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

[18]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[19]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[20]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020399

2019 Impact Factor: 0.953

Article outline

[Back to Top]