• Previous Article
    Deterministic control of stochastic reaction-diffusion equations
  • EECT Home
  • This Issue
  • Next Article
    Bounds for lifespan of solutions to strongly damped semilinear wave equations with logarithmic sources and arbitrary initial energy
doi: 10.3934/eect.2021005

An inverse problem for the pseudo-parabolic equation with p-Laplacian

1. 

Lavrentyev Institute of Hydrodynamics of SB RAS, Novosibirsk, Russia

2. 

Al-Farabi Kazakh National University, Almaty, Kazakhstan

3. 

Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan

* Corresponding author: aitzhanovserik81@gmail.com (Serik Ersultanovich Aitzhanov)

Received  July 2020 Revised  October 2020 Published  January 2021

Fund Project: The first author is supported by the RSF, Russia, grant no. 19-11-00069 (50 percent of all results, Lemma 2.1, Theorem 3.4, Passage to the limit). The second and third authors were financially support by the Ministry of education and science of the Republic of Kazakhstan, grant no. AP08052425 (50 percent of all results, Introduction, Theorems 3.2, 5.1, 6.1)

In this article, we study the inverse problem of determining the right side of the pseudo-parabolic equation with a p-Laplacian and nonlocal integral overdetermination condition. The existence of solutions in a local and global time to the inverse problem is proved by using the Galerkin method. Sufficient conditions for blow-up (explosion) of the local solutions in a finite time are derived. The asymptotic behavior of solutions to the inverse problem is studied for large values of time. Sufficient conditions are obtained for the solution to disappear (vanish to identical zero) in a finite time. The limits conditions that which ensure the appropriate behavior of solutions are considered.

Citation: Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, doi: 10.3934/eect.2021005
References:
[1]

A. Asanov and E. R. Atamanov, An inverse problem for a pseudoparabolic integrodifferential operator equation, Siberian Mathematical Journal, 36 (1995), 645-655.  doi: 10.1007/BF02107322.  Google Scholar

[2]

A. Asanov and E. R. Atamanov, Nonclassical and Inverse Problems for Pseudoparabolic Equations, De Gruyter, Berlin, 1997. doi: 10.1515/9783110900149.  Google Scholar

[3]

A. B. Al'shin, M. O. Korpusov and A. G. Sveshnikov, Blow-up in Nonlinear Sobolev Type Equations, De Gruyter, Berlin, 2011. doi: 10.1515/9783110255294.  Google Scholar

[4]

S. N. Antontsev and Kh. Khompysh, Kelvin-Voigt equation with p-Laplacian and damping term: Existence, uniqueness and blow–up, Mathematical Analysis and Applications, 446 (2017), 1255-1273.  doi: 10.1016/j.jmaa.2016.09.023.  Google Scholar

[5]

S. N. Antontsev and Kh. Khompysh, Generalized Kelvin–Voigt equations with p-Laplacian and source/absorption terms, Mathematical Analysis and Applications, 456 (2017), 99-116.  doi: 10.1016/j.jmaa.2017.06.056.  Google Scholar

[6]

S. N. AntontsevH. B. de Oliveira and Kh. Khompysh, Kelvin-Voigt equations perturbed by anisotropic relaxation, diffusion and damping, Mathematical Analysis and Applications, 473 (2019), 1122-1154.  doi: 10.1016/j.jmaa.2019.01.011.  Google Scholar

[7]

S. N. AntontsevH. B. de Oliveira and Kh. Khompysh, Generalized Kelvin-Voigt equations for nonhomogeneous and incompressible fluids, Communications in Mathematical Sciences, 17 (2019), 1915-1948.  doi: 10.4310/CMS.2019.v17.n7.a7.  Google Scholar

[8]

S. N. Antontsev, H. B. de Oliveira and Kh. Khompysh, Kelvin-Voigt equations with anisotropic diffusion, relaxation, and damping: Blow-up and large time behavior, Asymptotic Analysis, (2020). (In press). doi: 10.3233/ASY-201597.  Google Scholar

[9]

S. N. Antontsev and S. E. Aitzhanov, Inverse problem for an equation with a nonstandard growth condition, Journal of Applied Mechanics and Technical Physics, 60 (2019), 265-277.  doi: 10.1134/S0021894419020081.  Google Scholar

[10]

S. E. Aitzhanov and D. T. Zhanuzakova, Behavior of solutions to an inverse problem for a quasilinear parabolic equation, Siberian Electronic Mathematical Reports, 16 (2019), 1393-1409.  doi: 10.33048/semi.2019.16.097.  Google Scholar

[11]

S. N. Antontsev, J. I. Díaz and S. Shmarev, Energy Methods for Free Boundary Problems: Progress in Nonlinear Differential Equations and Their Applications, Birkhäuse Boston, Inc., Boston, 2002. doi: 10.1007/978-1-4612-0091-8.  Google Scholar

[12]

B. P. Demidovič, Lectures on the Mathematical Stability Theory, Nauka, Moscow, in Russian, 1967.  Google Scholar

[13]

A. Favini and A. Lorenzi, Differential Equations, Inverse and Direct Problems, Tylor and Francis Group, LLC, 2006. Google Scholar

[14]

S. I. Kabanikhin, Inverse and Ill-posed Problems: Theory and Applications, De Gruyter, Berlin, 2012.  Google Scholar

[15]

A. I. Kozhanov, Inverse problems for determining boundary regimes for some equations of sobolev type, Bulletin of The South Ural State University Series-Mathematical Modelling Programming and Computer Software, in Russian, 9 (2016), 37–45. doi: 10.14529/mmp160204.  Google Scholar

[16]

A. I. Kozhanov, Composite Type Equations and Inverse Problems, VSP, Netherlands, 1999. doi: 10.1515/9783110943276.  Google Scholar

[17]

V. Isakov, Inverse Problems for Partial Differential Equations, Springer, New-York-Berlin-Heidelberg, 1998. doi: 10.1007/978-1-4899-0030-2.  Google Scholar

[18]

A. Sh. Lyubanova and A. Tani, An inverse problem for pseudoparabolic equation of filtration, The existence, uniqueness and regularity, Applicable Analysis, 90 (2011), 1557-1571.  doi: 10.1080/00036811.2010.530258.  Google Scholar

[19]

A. Sh. Lyubanova and A. Tani, On inverse problems for pseudoparabolic and parabolic equations of filtration, Inverse Problems in Science and Engineering, 19 (2011), 1023-1042.  doi: 10.1080/17415977.2011.569712.  Google Scholar

[20]

A. Sh. Lyubanova and A. Tani, An inverse problem for pseudoparabolic equation of filtration: The stabilization, Applicable Analysis, 92 (2013), 573-585.  doi: 10.1080/00036811.2011.630667.  Google Scholar

[21]

A. Sh. Lyubanova and A. V. Velisevich, Inverse problems for the stationary and pseudoparabolic equations of diffusion, Applicable Analysis, 98 (2019), 1997-2010.  doi: 10.1080/00036811.2018.1442001.  Google Scholar

[22]

J.-L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites non Linéaires, Dunod, Paris, 1969.  Google Scholar

[23]

A. I. Prilepko, D. G. Orlovsky and I. A. Vasin, Method for Solving Inverse Problems in Mathematical Physics, Vol. 231, Marcel Dekker: Monograths and Textbooks in Pure and Applied Mathematics, 2000.  Google Scholar

[24]

S. G. Pyatkov and S. N. Shergin, On some mathematical models of filtration theory, Bulletin of The South Ural State University Series-Mathematical Modelling Programming and Computer Software, in Russian, 8 (2015), 105–116. Google Scholar

[25] V. G. Romanov, Inverse Problems of Mathematical Physics, VNU Science Press, Utrecht, 1987.   Google Scholar
[26]

M. Yaman, Blow-up solution and stability to an inverse problem for a pseudo-parabolic equation, Journal of Inequalities and Applications, 2012 (2012), 1-8.  doi: 10.1186/1029-242X-2012-274.  Google Scholar

show all references

References:
[1]

A. Asanov and E. R. Atamanov, An inverse problem for a pseudoparabolic integrodifferential operator equation, Siberian Mathematical Journal, 36 (1995), 645-655.  doi: 10.1007/BF02107322.  Google Scholar

[2]

A. Asanov and E. R. Atamanov, Nonclassical and Inverse Problems for Pseudoparabolic Equations, De Gruyter, Berlin, 1997. doi: 10.1515/9783110900149.  Google Scholar

[3]

A. B. Al'shin, M. O. Korpusov and A. G. Sveshnikov, Blow-up in Nonlinear Sobolev Type Equations, De Gruyter, Berlin, 2011. doi: 10.1515/9783110255294.  Google Scholar

[4]

S. N. Antontsev and Kh. Khompysh, Kelvin-Voigt equation with p-Laplacian and damping term: Existence, uniqueness and blow–up, Mathematical Analysis and Applications, 446 (2017), 1255-1273.  doi: 10.1016/j.jmaa.2016.09.023.  Google Scholar

[5]

S. N. Antontsev and Kh. Khompysh, Generalized Kelvin–Voigt equations with p-Laplacian and source/absorption terms, Mathematical Analysis and Applications, 456 (2017), 99-116.  doi: 10.1016/j.jmaa.2017.06.056.  Google Scholar

[6]

S. N. AntontsevH. B. de Oliveira and Kh. Khompysh, Kelvin-Voigt equations perturbed by anisotropic relaxation, diffusion and damping, Mathematical Analysis and Applications, 473 (2019), 1122-1154.  doi: 10.1016/j.jmaa.2019.01.011.  Google Scholar

[7]

S. N. AntontsevH. B. de Oliveira and Kh. Khompysh, Generalized Kelvin-Voigt equations for nonhomogeneous and incompressible fluids, Communications in Mathematical Sciences, 17 (2019), 1915-1948.  doi: 10.4310/CMS.2019.v17.n7.a7.  Google Scholar

[8]

S. N. Antontsev, H. B. de Oliveira and Kh. Khompysh, Kelvin-Voigt equations with anisotropic diffusion, relaxation, and damping: Blow-up and large time behavior, Asymptotic Analysis, (2020). (In press). doi: 10.3233/ASY-201597.  Google Scholar

[9]

S. N. Antontsev and S. E. Aitzhanov, Inverse problem for an equation with a nonstandard growth condition, Journal of Applied Mechanics and Technical Physics, 60 (2019), 265-277.  doi: 10.1134/S0021894419020081.  Google Scholar

[10]

S. E. Aitzhanov and D. T. Zhanuzakova, Behavior of solutions to an inverse problem for a quasilinear parabolic equation, Siberian Electronic Mathematical Reports, 16 (2019), 1393-1409.  doi: 10.33048/semi.2019.16.097.  Google Scholar

[11]

S. N. Antontsev, J. I. Díaz and S. Shmarev, Energy Methods for Free Boundary Problems: Progress in Nonlinear Differential Equations and Their Applications, Birkhäuse Boston, Inc., Boston, 2002. doi: 10.1007/978-1-4612-0091-8.  Google Scholar

[12]

B. P. Demidovič, Lectures on the Mathematical Stability Theory, Nauka, Moscow, in Russian, 1967.  Google Scholar

[13]

A. Favini and A. Lorenzi, Differential Equations, Inverse and Direct Problems, Tylor and Francis Group, LLC, 2006. Google Scholar

[14]

S. I. Kabanikhin, Inverse and Ill-posed Problems: Theory and Applications, De Gruyter, Berlin, 2012.  Google Scholar

[15]

A. I. Kozhanov, Inverse problems for determining boundary regimes for some equations of sobolev type, Bulletin of The South Ural State University Series-Mathematical Modelling Programming and Computer Software, in Russian, 9 (2016), 37–45. doi: 10.14529/mmp160204.  Google Scholar

[16]

A. I. Kozhanov, Composite Type Equations and Inverse Problems, VSP, Netherlands, 1999. doi: 10.1515/9783110943276.  Google Scholar

[17]

V. Isakov, Inverse Problems for Partial Differential Equations, Springer, New-York-Berlin-Heidelberg, 1998. doi: 10.1007/978-1-4899-0030-2.  Google Scholar

[18]

A. Sh. Lyubanova and A. Tani, An inverse problem for pseudoparabolic equation of filtration, The existence, uniqueness and regularity, Applicable Analysis, 90 (2011), 1557-1571.  doi: 10.1080/00036811.2010.530258.  Google Scholar

[19]

A. Sh. Lyubanova and A. Tani, On inverse problems for pseudoparabolic and parabolic equations of filtration, Inverse Problems in Science and Engineering, 19 (2011), 1023-1042.  doi: 10.1080/17415977.2011.569712.  Google Scholar

[20]

A. Sh. Lyubanova and A. Tani, An inverse problem for pseudoparabolic equation of filtration: The stabilization, Applicable Analysis, 92 (2013), 573-585.  doi: 10.1080/00036811.2011.630667.  Google Scholar

[21]

A. Sh. Lyubanova and A. V. Velisevich, Inverse problems for the stationary and pseudoparabolic equations of diffusion, Applicable Analysis, 98 (2019), 1997-2010.  doi: 10.1080/00036811.2018.1442001.  Google Scholar

[22]

J.-L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites non Linéaires, Dunod, Paris, 1969.  Google Scholar

[23]

A. I. Prilepko, D. G. Orlovsky and I. A. Vasin, Method for Solving Inverse Problems in Mathematical Physics, Vol. 231, Marcel Dekker: Monograths and Textbooks in Pure and Applied Mathematics, 2000.  Google Scholar

[24]

S. G. Pyatkov and S. N. Shergin, On some mathematical models of filtration theory, Bulletin of The South Ural State University Series-Mathematical Modelling Programming and Computer Software, in Russian, 8 (2015), 105–116. Google Scholar

[25] V. G. Romanov, Inverse Problems of Mathematical Physics, VNU Science Press, Utrecht, 1987.   Google Scholar
[26]

M. Yaman, Blow-up solution and stability to an inverse problem for a pseudo-parabolic equation, Journal of Inequalities and Applications, 2012 (2012), 1-8.  doi: 10.1186/1029-242X-2012-274.  Google Scholar

[1]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[2]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[3]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282

[4]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[5]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[6]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[7]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[8]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[9]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[10]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[11]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[12]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[13]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[14]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[15]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[16]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[17]

Elena Nozdrinova, Olga Pochinka. Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1101-1131. doi: 10.3934/dcds.2020311

[18]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[19]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[20]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

2019 Impact Factor: 0.953

Article outline

[Back to Top]