• Previous Article
    Local null controllability for a parabolic equation with local and nonlocal nonlinearities in moving domains
  • EECT Home
  • This Issue
  • Next Article
    Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains
doi: 10.3934/eect.2021005
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

An inverse problem for the pseudo-parabolic equation with p-Laplacian

1. 

Lavrentyev Institute of Hydrodynamics of SB RAS, Novosibirsk, Russia

2. 

Al-Farabi Kazakh National University, Almaty, Kazakhstan

3. 

Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan

* Corresponding author: aitzhanovserik81@gmail.com (Serik Ersultanovich Aitzhanov)

Received  July 2020 Revised  October 2020 Early access January 2021

Fund Project: The first author is supported by the RSF, Russia, grant no. 19-11-00069 (50 percent of all results, Lemma 2.1, Theorem 3.4, Passage to the limit). The second and third authors were financially support by the Ministry of education and science of the Republic of Kazakhstan, grant no. AP08052425 (50 percent of all results, Introduction, Theorems 3.2, 5.1, 6.1)

In this article, we study the inverse problem of determining the right side of the pseudo-parabolic equation with a p-Laplacian and nonlocal integral overdetermination condition. The existence of solutions in a local and global time to the inverse problem is proved by using the Galerkin method. Sufficient conditions for blow-up (explosion) of the local solutions in a finite time are derived. The asymptotic behavior of solutions to the inverse problem is studied for large values of time. Sufficient conditions are obtained for the solution to disappear (vanish to identical zero) in a finite time. The limits conditions that which ensure the appropriate behavior of solutions are considered.

Citation: Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, doi: 10.3934/eect.2021005
References:
[1]

A. Asanov and E. R. Atamanov, An inverse problem for a pseudoparabolic integrodifferential operator equation, Siberian Mathematical Journal, 36 (1995), 645-655.  doi: 10.1007/BF02107322.  Google Scholar

[2]

A. Asanov and E. R. Atamanov, Nonclassical and Inverse Problems for Pseudoparabolic Equations, De Gruyter, Berlin, 1997. doi: 10.1515/9783110900149.  Google Scholar

[3]

A. B. Al'shin, M. O. Korpusov and A. G. Sveshnikov, Blow-up in Nonlinear Sobolev Type Equations, De Gruyter, Berlin, 2011. doi: 10.1515/9783110255294.  Google Scholar

[4]

S. N. Antontsev and Kh. Khompysh, Kelvin-Voigt equation with p-Laplacian and damping term: Existence, uniqueness and blow–up, Mathematical Analysis and Applications, 446 (2017), 1255-1273.  doi: 10.1016/j.jmaa.2016.09.023.  Google Scholar

[5]

S. N. Antontsev and Kh. Khompysh, Generalized Kelvin–Voigt equations with p-Laplacian and source/absorption terms, Mathematical Analysis and Applications, 456 (2017), 99-116.  doi: 10.1016/j.jmaa.2017.06.056.  Google Scholar

[6]

S. N. AntontsevH. B. de Oliveira and Kh. Khompysh, Kelvin-Voigt equations perturbed by anisotropic relaxation, diffusion and damping, Mathematical Analysis and Applications, 473 (2019), 1122-1154.  doi: 10.1016/j.jmaa.2019.01.011.  Google Scholar

[7]

S. N. AntontsevH. B. de Oliveira and Kh. Khompysh, Generalized Kelvin-Voigt equations for nonhomogeneous and incompressible fluids, Communications in Mathematical Sciences, 17 (2019), 1915-1948.  doi: 10.4310/CMS.2019.v17.n7.a7.  Google Scholar

[8]

S. N. Antontsev, H. B. de Oliveira and Kh. Khompysh, Kelvin-Voigt equations with anisotropic diffusion, relaxation, and damping: Blow-up and large time behavior, Asymptotic Analysis, 121 (2021), 125–157. doi: 10.3233/ASY-201597.  Google Scholar

[9]

S. N. Antontsev and S. E. Aitzhanov, Inverse problem for an equation with a nonstandard growth condition, Journal of Applied Mechanics and Technical Physics, 60 (2019), 265-277.  doi: 10.1134/S0021894419020081.  Google Scholar

[10]

S. E. Aitzhanov and D. T. Zhanuzakova, Behavior of solutions to an inverse problem for a quasilinear parabolic equation, Siberian Electronic Mathematical Reports, 16 (2019), 1393-1409.  doi: 10.33048/semi.2019.16.097.  Google Scholar

[11]

S. N. Antontsev, J. I. Díaz and S. Shmarev, Energy Methods for Free Boundary Problems: Progress in Nonlinear Differential Equations and Their Applications, Birkhäuse Boston, Inc., Boston, 2002. doi: 10.1007/978-1-4612-0091-8.  Google Scholar

[12]

B. P. Demidovič, Lectures on the Mathematical Stability Theory, Nauka, Moscow, in Russian, 1967.  Google Scholar

[13]

A. Favini and A. Lorenzi, Differential Equations, Inverse and Direct Problems, Tylor and Francis Group, LLC, 2006. Google Scholar

[14]

S. I. Kabanikhin, Inverse and Ill-posed Problems: Theory and Applications, De Gruyter, Berlin, 2012.  Google Scholar

[15]

A. I. Kozhanov, Inverse problems for determining boundary regimes for some equations of sobolev type, Bulletin of The South Ural State University Series-Mathematical Modelling Programming and Computer Software, in Russian, 9 (2016), 37–45. doi: 10.14529/mmp160204.  Google Scholar

[16]

A. I. Kozhanov, Composite Type Equations and Inverse Problems, VSP, Netherlands, 1999. doi: 10.1515/9783110943276.  Google Scholar

[17]

V. Isakov, Inverse Problems for Partial Differential Equations, Springer, New-York-Berlin-Heidelberg, 1998. doi: 10.1007/978-1-4899-0030-2.  Google Scholar

[18]

A. Sh. Lyubanova and A. Tani, An inverse problem for pseudoparabolic equation of filtration, The existence, uniqueness and regularity, Applicable Analysis, 90 (2011), 1557-1571.  doi: 10.1080/00036811.2010.530258.  Google Scholar

[19]

A. Sh. Lyubanova and A. Tani, On inverse problems for pseudoparabolic and parabolic equations of filtration, Inverse Problems in Science and Engineering, 19 (2011), 1023-1042.  doi: 10.1080/17415977.2011.569712.  Google Scholar

[20]

A. Sh. Lyubanova and A. Tani, An inverse problem for pseudoparabolic equation of filtration: The stabilization, Applicable Analysis, 92 (2013), 573-585.  doi: 10.1080/00036811.2011.630667.  Google Scholar

[21]

A. Sh. Lyubanova and A. V. Velisevich, Inverse problems for the stationary and pseudoparabolic equations of diffusion, Applicable Analysis, 98 (2019), 1997-2010.  doi: 10.1080/00036811.2018.1442001.  Google Scholar

[22]

J.-L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites non Linéaires, Dunod, Paris, 1969.  Google Scholar

[23]

A. I. Prilepko, D. G. Orlovsky and I. A. Vasin, Method for Solving Inverse Problems in Mathematical Physics, Vol. 231, Marcel Dekker: Monograths and Textbooks in Pure and Applied Mathematics, 2000.  Google Scholar

[24]

S. G. Pyatkov and S. N. Shergin, On some mathematical models of filtration theory, Bulletin of The South Ural State University Series-Mathematical Modelling Programming and Computer Software, in Russian, 8 (2015), 105–116. Google Scholar

[25] V. G. Romanov, Inverse Problems of Mathematical Physics, VNU Science Press, Utrecht, 1987.   Google Scholar
[26]

M. Yaman, Blow-up solution and stability to an inverse problem for a pseudo-parabolic equation, Journal of Inequalities and Applications, 2012 (2012), 1-8.  doi: 10.1186/1029-242X-2012-274.  Google Scholar

show all references

References:
[1]

A. Asanov and E. R. Atamanov, An inverse problem for a pseudoparabolic integrodifferential operator equation, Siberian Mathematical Journal, 36 (1995), 645-655.  doi: 10.1007/BF02107322.  Google Scholar

[2]

A. Asanov and E. R. Atamanov, Nonclassical and Inverse Problems for Pseudoparabolic Equations, De Gruyter, Berlin, 1997. doi: 10.1515/9783110900149.  Google Scholar

[3]

A. B. Al'shin, M. O. Korpusov and A. G. Sveshnikov, Blow-up in Nonlinear Sobolev Type Equations, De Gruyter, Berlin, 2011. doi: 10.1515/9783110255294.  Google Scholar

[4]

S. N. Antontsev and Kh. Khompysh, Kelvin-Voigt equation with p-Laplacian and damping term: Existence, uniqueness and blow–up, Mathematical Analysis and Applications, 446 (2017), 1255-1273.  doi: 10.1016/j.jmaa.2016.09.023.  Google Scholar

[5]

S. N. Antontsev and Kh. Khompysh, Generalized Kelvin–Voigt equations with p-Laplacian and source/absorption terms, Mathematical Analysis and Applications, 456 (2017), 99-116.  doi: 10.1016/j.jmaa.2017.06.056.  Google Scholar

[6]

S. N. AntontsevH. B. de Oliveira and Kh. Khompysh, Kelvin-Voigt equations perturbed by anisotropic relaxation, diffusion and damping, Mathematical Analysis and Applications, 473 (2019), 1122-1154.  doi: 10.1016/j.jmaa.2019.01.011.  Google Scholar

[7]

S. N. AntontsevH. B. de Oliveira and Kh. Khompysh, Generalized Kelvin-Voigt equations for nonhomogeneous and incompressible fluids, Communications in Mathematical Sciences, 17 (2019), 1915-1948.  doi: 10.4310/CMS.2019.v17.n7.a7.  Google Scholar

[8]

S. N. Antontsev, H. B. de Oliveira and Kh. Khompysh, Kelvin-Voigt equations with anisotropic diffusion, relaxation, and damping: Blow-up and large time behavior, Asymptotic Analysis, 121 (2021), 125–157. doi: 10.3233/ASY-201597.  Google Scholar

[9]

S. N. Antontsev and S. E. Aitzhanov, Inverse problem for an equation with a nonstandard growth condition, Journal of Applied Mechanics and Technical Physics, 60 (2019), 265-277.  doi: 10.1134/S0021894419020081.  Google Scholar

[10]

S. E. Aitzhanov and D. T. Zhanuzakova, Behavior of solutions to an inverse problem for a quasilinear parabolic equation, Siberian Electronic Mathematical Reports, 16 (2019), 1393-1409.  doi: 10.33048/semi.2019.16.097.  Google Scholar

[11]

S. N. Antontsev, J. I. Díaz and S. Shmarev, Energy Methods for Free Boundary Problems: Progress in Nonlinear Differential Equations and Their Applications, Birkhäuse Boston, Inc., Boston, 2002. doi: 10.1007/978-1-4612-0091-8.  Google Scholar

[12]

B. P. Demidovič, Lectures on the Mathematical Stability Theory, Nauka, Moscow, in Russian, 1967.  Google Scholar

[13]

A. Favini and A. Lorenzi, Differential Equations, Inverse and Direct Problems, Tylor and Francis Group, LLC, 2006. Google Scholar

[14]

S. I. Kabanikhin, Inverse and Ill-posed Problems: Theory and Applications, De Gruyter, Berlin, 2012.  Google Scholar

[15]

A. I. Kozhanov, Inverse problems for determining boundary regimes for some equations of sobolev type, Bulletin of The South Ural State University Series-Mathematical Modelling Programming and Computer Software, in Russian, 9 (2016), 37–45. doi: 10.14529/mmp160204.  Google Scholar

[16]

A. I. Kozhanov, Composite Type Equations and Inverse Problems, VSP, Netherlands, 1999. doi: 10.1515/9783110943276.  Google Scholar

[17]

V. Isakov, Inverse Problems for Partial Differential Equations, Springer, New-York-Berlin-Heidelberg, 1998. doi: 10.1007/978-1-4899-0030-2.  Google Scholar

[18]

A. Sh. Lyubanova and A. Tani, An inverse problem for pseudoparabolic equation of filtration, The existence, uniqueness and regularity, Applicable Analysis, 90 (2011), 1557-1571.  doi: 10.1080/00036811.2010.530258.  Google Scholar

[19]

A. Sh. Lyubanova and A. Tani, On inverse problems for pseudoparabolic and parabolic equations of filtration, Inverse Problems in Science and Engineering, 19 (2011), 1023-1042.  doi: 10.1080/17415977.2011.569712.  Google Scholar

[20]

A. Sh. Lyubanova and A. Tani, An inverse problem for pseudoparabolic equation of filtration: The stabilization, Applicable Analysis, 92 (2013), 573-585.  doi: 10.1080/00036811.2011.630667.  Google Scholar

[21]

A. Sh. Lyubanova and A. V. Velisevich, Inverse problems for the stationary and pseudoparabolic equations of diffusion, Applicable Analysis, 98 (2019), 1997-2010.  doi: 10.1080/00036811.2018.1442001.  Google Scholar

[22]

J.-L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites non Linéaires, Dunod, Paris, 1969.  Google Scholar

[23]

A. I. Prilepko, D. G. Orlovsky and I. A. Vasin, Method for Solving Inverse Problems in Mathematical Physics, Vol. 231, Marcel Dekker: Monograths and Textbooks in Pure and Applied Mathematics, 2000.  Google Scholar

[24]

S. G. Pyatkov and S. N. Shergin, On some mathematical models of filtration theory, Bulletin of The South Ural State University Series-Mathematical Modelling Programming and Computer Software, in Russian, 8 (2015), 105–116. Google Scholar

[25] V. G. Romanov, Inverse Problems of Mathematical Physics, VNU Science Press, Utrecht, 1987.   Google Scholar
[26]

M. Yaman, Blow-up solution and stability to an inverse problem for a pseudo-parabolic equation, Journal of Inequalities and Applications, 2012 (2012), 1-8.  doi: 10.1186/1029-242X-2012-274.  Google Scholar

[1]

Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051

[2]

Monica Marras, Stella Vernier-Piro, Giuseppe Viglialoro. Blow-up phenomena for nonlinear pseudo-parabolic equations with gradient term. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2291-2300. doi: 10.3934/dcdsb.2017096

[3]

Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935

[4]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[5]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[6]

Xiaoli Zhu, Fuyi Li, Ting Rong. Global existence and blow up of solutions to a class of pseudo-parabolic equations with an exponential source. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2465-2485. doi: 10.3934/cpaa.2015.14.2465

[7]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

[8]

Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021, 14 (8) : 2607-2623. doi: 10.3934/dcdss.2021032

[9]

Bin Guo, Wenjie Gao. Finite-time blow-up and extinction rates of solutions to an initial Neumann problem involving the $p(x,t)-Laplace$ operator and a non-local term. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 715-730. doi: 10.3934/dcds.2016.36.715

[10]

Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225

[11]

Juntang Ding, Chenyu Dong. Blow-up results of the positive solution for a weakly coupled quasilinear parabolic system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021222

[12]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[13]

Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021

[14]

Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768

[15]

Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661

[16]

Qiong Chen, Chunlai Mu, Zhaoyin Xiang. Blow-up and asymptotic behavior of solutions to a semilinear integrodifferential system. Communications on Pure & Applied Analysis, 2006, 5 (3) : 435-446. doi: 10.3934/cpaa.2006.5.435

[17]

Anthony Suen. Existence and a blow-up criterion of solution to the 3D compressible Navier-Stokes-Poisson equations with finite energy. Discrete & Continuous Dynamical Systems, 2020, 40 (3) : 1775-1798. doi: 10.3934/dcds.2020093

[18]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[19]

Jens Lorenz, Wilberclay G. Melo, Natã Firmino Rocha. The Magneto–Hydrodynamic equations: Local theory and blow-up of solutions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3819-3841. doi: 10.3934/dcdsb.2018332

[20]

Yang Cao, Qiuting Zhao. Initial boundary value problem of a class of mixed pseudo-parabolic Kirchhoff equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021064

2020 Impact Factor: 1.081

Article outline

[Back to Top]