-
Previous Article
Funnel Control for boundary control systems
- EECT Home
- This Issue
-
Next Article
Stabilization of higher order Schrödinger equations on a finite interval: Part I
$ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations
1. | Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina 842 48, Bratislava, Slovakia |
2. | Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49,814 73 Bratislava, Slovakia |
3. | Department of Mathematics, Guizhou University, Guiyang, Guizhou 550025, P. R. China |
4. | College of Science, Guizhou Institute of Technology, Guiyang, Guizhou 550025, P. R. China |
5. | School of Mathematical Sciences, Qufu Normal University, , Qufu, Shandong 273165, P. R. China |
In this paper, we study $ (\omega,\mathbb{T}) $-periodic impulsive evolution equations via the operator semigroups theory in Banach spaces $ X $, where $ \mathbb{T}: X\rightarrow X $ is a linear isomorphism. Existence and uniqueness of $ (\omega,\mathbb{T}) $-periodic solutions results for linear and semilinear problems are obtained by Fredholm alternative theorem and fixed point theorems, which extend the related results for periodic impulsive differential equations.
References:
[1] |
N. U. Ahmed, K. L. Teo and S. H. Hou,
Nonlinear impulsive systems on infinite dimensional spaces, Nonlinear Analysis: TMA, 54 (2003), 907-925.
doi: 10.1016/S0362-546X(03)00117-2. |
[2] |
E. Alvarez, A. Gómez and M. Pinto, $(\omega, c)$-periodic functions and mild solutions to abstract fractional integro-differential equations, Electron. J. Qual. Theory Differ. Equ., (2018), 16–24.
doi: 10.14232/ejqtde.2018.1.16. |
[3] |
M. Agaoglou, M. Fečkan and A. Panagiotidou,
Existence and uniqueness of $(\omega, c)$-periodic solutions of semilinear evolution equations, Int. J. Dynamical Systems and Differential Equations, 10 (2020), 149-166.
doi: 10.1504/IJDSDE.2020.106027. |
[4] |
E. Alvarez, S. Castillo and M. Pinto, $(\omega, c)-$Pseudo periodic functions, first order Cauchy problem and Lasota-Wazewska model with ergodic and unbounded oscillating production of red cells, Bound. Value Prob., (2019), 106–126.
doi: 10.1186/s13661-019-1217-x. |
[5] |
E. Alvarez, S. Castillo and M. Pinto,
$(\omega, c)-$asymptotically periodic functions, first-order Cauchy problem, and Lasota-Wazewska model with unbounded oscillating production of red cells, Math. Meth. Appl. Sci., 43 (2020), 305-319.
doi: 10.1002/mma.5880. |
[6] |
D. Bainov and P. Simeonov, Theory of Impulsive Differential Equations, Series on Advances in Mathematics for Applied Sciences, vol. 28. Singapore, World Scientifc, 1995.
doi: 10.1142/9789812831804. |
[7] |
D. Bainov and P. Simeonov, Oscillation Theory of Impulsive Differential Equations, Interna-tional Publications, 1998. |
[8] |
C. Cooke and J. Kroll,
The existence of periodic solutions to certain impulsive differential equations, Comput. Math. Appl., 44 (2002), 667-676.
doi: 10.1016/S0898-1221(02)00181-5. |
[9] |
X. Chang and Y. Li,
Rotating periodic solutions of second order dissipative dynamical systems, Discret. Contin. Dyn. Syst., 36 (2016), 633-652.
|
[10] |
M. Fečkan, J. Wang and Y. Zhou,
Existence of periodic solutions for nonlinear evolution equations with non- instantaneous impulses, Nonauton. Dyn. Syst., 1 (2014), 93-101.
|
[11] |
M. Fečkan, R. Ma and B. Thompson,
Forced symmetric oscillations, Bull. Belg. Math. Soc., 14 (2007), 73-85.
doi: 10.36045/bbms/1172852245. |
[12] |
Y. Li, F. Cong, Z. Lin and W. liu,
Periodic solutions for evolution equations, Nonlinear Analysis: Theory, Methods and Applications, 36 (1999), 275-293.
doi: 10.1016/S0362-546X(97)00626-3. |
[13] |
X. Li, B. Martin and C. Wang,
Impulsive differential equations: Periodic solutions and applications, Automatica, 52 (2015), 173-178.
doi: 10.1016/j.automatica.2014.11.009. |
[14] |
M. Li, J. Wang and M. Fečkan,
$(\omega, c)$-periodic solutions for impulsive differential systems, Communications Mathematical Analysis, 21 (2018), 35-46.
|
[15] |
K. Liu, J. Wang, D. O'Regan and M. Fečkan,
A new class of $(\omega, c)$-periodic non-instantaneous impulsive differential equations, Mediterr. J. Math., 17 (2020), 155-177.
doi: 10.1007/s00009-020-01574-8. |
[16] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[17] |
A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.
doi: 10.1142/9789812798664. |
[18] |
C. Wang,
Almost periodic solutions of impulsive BAM neural networks with variable delays on time scales, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 2828-2842.
doi: 10.1016/j.cnsns.2013.12.038. |
[19] |
J. Wang and M. Fečkan,
A general class of impulsive evolution equations, Topol. Meth. Nonlinear Anal., 46 (2015), 915-934.
|
[20] |
J. Wang, X. Xiang and W. Wei, Linear impulsive periodic system with time-varying generating operators on Banach space, Adv. Differ. Equ., (2007), 26196, 16 pp.
doi: 10.1155/2007/26196. |
show all references
References:
[1] |
N. U. Ahmed, K. L. Teo and S. H. Hou,
Nonlinear impulsive systems on infinite dimensional spaces, Nonlinear Analysis: TMA, 54 (2003), 907-925.
doi: 10.1016/S0362-546X(03)00117-2. |
[2] |
E. Alvarez, A. Gómez and M. Pinto, $(\omega, c)$-periodic functions and mild solutions to abstract fractional integro-differential equations, Electron. J. Qual. Theory Differ. Equ., (2018), 16–24.
doi: 10.14232/ejqtde.2018.1.16. |
[3] |
M. Agaoglou, M. Fečkan and A. Panagiotidou,
Existence and uniqueness of $(\omega, c)$-periodic solutions of semilinear evolution equations, Int. J. Dynamical Systems and Differential Equations, 10 (2020), 149-166.
doi: 10.1504/IJDSDE.2020.106027. |
[4] |
E. Alvarez, S. Castillo and M. Pinto, $(\omega, c)-$Pseudo periodic functions, first order Cauchy problem and Lasota-Wazewska model with ergodic and unbounded oscillating production of red cells, Bound. Value Prob., (2019), 106–126.
doi: 10.1186/s13661-019-1217-x. |
[5] |
E. Alvarez, S. Castillo and M. Pinto,
$(\omega, c)-$asymptotically periodic functions, first-order Cauchy problem, and Lasota-Wazewska model with unbounded oscillating production of red cells, Math. Meth. Appl. Sci., 43 (2020), 305-319.
doi: 10.1002/mma.5880. |
[6] |
D. Bainov and P. Simeonov, Theory of Impulsive Differential Equations, Series on Advances in Mathematics for Applied Sciences, vol. 28. Singapore, World Scientifc, 1995.
doi: 10.1142/9789812831804. |
[7] |
D. Bainov and P. Simeonov, Oscillation Theory of Impulsive Differential Equations, Interna-tional Publications, 1998. |
[8] |
C. Cooke and J. Kroll,
The existence of periodic solutions to certain impulsive differential equations, Comput. Math. Appl., 44 (2002), 667-676.
doi: 10.1016/S0898-1221(02)00181-5. |
[9] |
X. Chang and Y. Li,
Rotating periodic solutions of second order dissipative dynamical systems, Discret. Contin. Dyn. Syst., 36 (2016), 633-652.
|
[10] |
M. Fečkan, J. Wang and Y. Zhou,
Existence of periodic solutions for nonlinear evolution equations with non- instantaneous impulses, Nonauton. Dyn. Syst., 1 (2014), 93-101.
|
[11] |
M. Fečkan, R. Ma and B. Thompson,
Forced symmetric oscillations, Bull. Belg. Math. Soc., 14 (2007), 73-85.
doi: 10.36045/bbms/1172852245. |
[12] |
Y. Li, F. Cong, Z. Lin and W. liu,
Periodic solutions for evolution equations, Nonlinear Analysis: Theory, Methods and Applications, 36 (1999), 275-293.
doi: 10.1016/S0362-546X(97)00626-3. |
[13] |
X. Li, B. Martin and C. Wang,
Impulsive differential equations: Periodic solutions and applications, Automatica, 52 (2015), 173-178.
doi: 10.1016/j.automatica.2014.11.009. |
[14] |
M. Li, J. Wang and M. Fečkan,
$(\omega, c)$-periodic solutions for impulsive differential systems, Communications Mathematical Analysis, 21 (2018), 35-46.
|
[15] |
K. Liu, J. Wang, D. O'Regan and M. Fečkan,
A new class of $(\omega, c)$-periodic non-instantaneous impulsive differential equations, Mediterr. J. Math., 17 (2020), 155-177.
doi: 10.1007/s00009-020-01574-8. |
[16] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[17] |
A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.
doi: 10.1142/9789812798664. |
[18] |
C. Wang,
Almost periodic solutions of impulsive BAM neural networks with variable delays on time scales, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 2828-2842.
doi: 10.1016/j.cnsns.2013.12.038. |
[19] |
J. Wang and M. Fečkan,
A general class of impulsive evolution equations, Topol. Meth. Nonlinear Anal., 46 (2015), 915-934.
|
[20] |
J. Wang, X. Xiang and W. Wei, Linear impulsive periodic system with time-varying generating operators on Banach space, Adv. Differ. Equ., (2007), 26196, 16 pp.
doi: 10.1155/2007/26196. |
[1] |
Christian Aarset, Christian Pötzsche. Bifurcations in periodic integrodifference equations in $ C(\Omega) $ I: Analytical results and applications. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 1-60. doi: 10.3934/dcdsb.2020231 |
[2] |
Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246 |
[3] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[4] |
Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265 |
[5] |
Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020440 |
[6] |
Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228 |
[7] |
Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020376 |
[8] |
Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067 |
[9] |
Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020123 |
[10] |
Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293 |
[11] |
Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020447 |
[12] |
Junchao Zhou, Yunge Xu, Lisha Wang, Nian Li. Nearly optimal codebooks from generalized Boolean bent functions over $ \mathbb{Z}_{4} $. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020121 |
[13] |
Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020378 |
[14] |
Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041 |
[15] |
Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020033 |
[16] |
Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052 |
[17] |
Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293 |
[18] |
Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020403 |
[19] |
Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365 |
[20] |
Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328 |
2019 Impact Factor: 0.953
Tools
Metrics
Other articles
by authors
[Back to Top]