doi: 10.3934/eect.2021006

$ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations

1. 

Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina 842 48, Bratislava, Slovakia

2. 

Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49,814 73 Bratislava, Slovakia

3. 

Department of Mathematics, Guizhou University, Guiyang, Guizhou 550025, P. R. China

4. 

College of Science, Guizhou Institute of Technology, Guiyang, Guizhou 550025, P. R. China

5. 

School of Mathematical Sciences, Qufu Normal University, , Qufu, Shandong 273165, P. R. China

* Corresponding author: JinRong Wang

Received  September 2020 Revised  November 2020 Published  January 2021

In this paper, we study $ (\omega,\mathbb{T}) $-periodic impulsive evolution equations via the operator semigroups theory in Banach spaces $ X $, where $ \mathbb{T}: X\rightarrow X $ is a linear isomorphism. Existence and uniqueness of $ (\omega,\mathbb{T}) $-periodic solutions results for linear and semilinear problems are obtained by Fredholm alternative theorem and fixed point theorems, which extend the related results for periodic impulsive differential equations.

Citation: Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, doi: 10.3934/eect.2021006
References:
[1]

N. U. AhmedK. L. Teo and S. H. Hou, Nonlinear impulsive systems on infinite dimensional spaces, Nonlinear Analysis: TMA, 54 (2003), 907-925.  doi: 10.1016/S0362-546X(03)00117-2.  Google Scholar

[2]

E. Alvarez, A. Gómez and M. Pinto, $(\omega, c)$-periodic functions and mild solutions to abstract fractional integro-differential equations, Electron. J. Qual. Theory Differ. Equ., (2018), 16–24. doi: 10.14232/ejqtde.2018.1.16.  Google Scholar

[3]

M. AgaoglouM. Fečkan and A. Panagiotidou, Existence and uniqueness of $(\omega, c)$-periodic solutions of semilinear evolution equations, Int. J. Dynamical Systems and Differential Equations, 10 (2020), 149-166.  doi: 10.1504/IJDSDE.2020.106027.  Google Scholar

[4]

E. Alvarez, S. Castillo and M. Pinto, $(\omega, c)-$Pseudo periodic functions, first order Cauchy problem and Lasota-Wazewska model with ergodic and unbounded oscillating production of red cells, Bound. Value Prob., (2019), 106–126. doi: 10.1186/s13661-019-1217-x.  Google Scholar

[5]

E. AlvarezS. Castillo and M. Pinto, $(\omega, c)-$asymptotically periodic functions, first-order Cauchy problem, and Lasota-Wazewska model with unbounded oscillating production of red cells, Math. Meth. Appl. Sci., 43 (2020), 305-319.  doi: 10.1002/mma.5880.  Google Scholar

[6]

D. Bainov and P. Simeonov, Theory of Impulsive Differential Equations, Series on Advances in Mathematics for Applied Sciences, vol. 28. Singapore, World Scientifc, 1995. doi: 10.1142/9789812831804.  Google Scholar

[7]

D. Bainov and P. Simeonov, Oscillation Theory of Impulsive Differential Equations, Interna-tional Publications, 1998.  Google Scholar

[8]

C. Cooke and J. Kroll, The existence of periodic solutions to certain impulsive differential equations, Comput. Math. Appl., 44 (2002), 667-676.  doi: 10.1016/S0898-1221(02)00181-5.  Google Scholar

[9]

X. Chang and Y. Li, Rotating periodic solutions of second order dissipative dynamical systems, Discret. Contin. Dyn. Syst., 36 (2016), 633-652.   Google Scholar

[10]

M. FečkanJ. Wang and Y. Zhou, Existence of periodic solutions for nonlinear evolution equations with non- instantaneous impulses, Nonauton. Dyn. Syst., 1 (2014), 93-101.   Google Scholar

[11]

M. FečkanR. Ma and B. Thompson, Forced symmetric oscillations, Bull. Belg. Math. Soc., 14 (2007), 73-85.  doi: 10.36045/bbms/1172852245.  Google Scholar

[12]

Y. LiF. CongZ. Lin and W. liu, Periodic solutions for evolution equations, Nonlinear Analysis: Theory, Methods and Applications, 36 (1999), 275-293.  doi: 10.1016/S0362-546X(97)00626-3.  Google Scholar

[13]

X. LiB. Martin and C. Wang, Impulsive differential equations: Periodic solutions and applications, Automatica, 52 (2015), 173-178.  doi: 10.1016/j.automatica.2014.11.009.  Google Scholar

[14]

M. LiJ. Wang and M. Fečkan, $(\omega, c)$-periodic solutions for impulsive differential systems, Communications Mathematical Analysis, 21 (2018), 35-46.   Google Scholar

[15]

K. LiuJ. WangD. O'Regan and M. Fečkan, A new class of $(\omega, c)$-periodic non-instantaneous impulsive differential equations, Mediterr. J. Math., 17 (2020), 155-177.  doi: 10.1007/s00009-020-01574-8.  Google Scholar

[16]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[17]

A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995. doi: 10.1142/9789812798664.  Google Scholar

[18]

C. Wang, Almost periodic solutions of impulsive BAM neural networks with variable delays on time scales, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 2828-2842.  doi: 10.1016/j.cnsns.2013.12.038.  Google Scholar

[19]

J. Wang and M. Fečkan, A general class of impulsive evolution equations, Topol. Meth. Nonlinear Anal., 46 (2015), 915-934.   Google Scholar

[20]

J. Wang, X. Xiang and W. Wei, Linear impulsive periodic system with time-varying generating operators on Banach space, Adv. Differ. Equ., (2007), 26196, 16 pp. doi: 10.1155/2007/26196.  Google Scholar

show all references

References:
[1]

N. U. AhmedK. L. Teo and S. H. Hou, Nonlinear impulsive systems on infinite dimensional spaces, Nonlinear Analysis: TMA, 54 (2003), 907-925.  doi: 10.1016/S0362-546X(03)00117-2.  Google Scholar

[2]

E. Alvarez, A. Gómez and M. Pinto, $(\omega, c)$-periodic functions and mild solutions to abstract fractional integro-differential equations, Electron. J. Qual. Theory Differ. Equ., (2018), 16–24. doi: 10.14232/ejqtde.2018.1.16.  Google Scholar

[3]

M. AgaoglouM. Fečkan and A. Panagiotidou, Existence and uniqueness of $(\omega, c)$-periodic solutions of semilinear evolution equations, Int. J. Dynamical Systems and Differential Equations, 10 (2020), 149-166.  doi: 10.1504/IJDSDE.2020.106027.  Google Scholar

[4]

E. Alvarez, S. Castillo and M. Pinto, $(\omega, c)-$Pseudo periodic functions, first order Cauchy problem and Lasota-Wazewska model with ergodic and unbounded oscillating production of red cells, Bound. Value Prob., (2019), 106–126. doi: 10.1186/s13661-019-1217-x.  Google Scholar

[5]

E. AlvarezS. Castillo and M. Pinto, $(\omega, c)-$asymptotically periodic functions, first-order Cauchy problem, and Lasota-Wazewska model with unbounded oscillating production of red cells, Math. Meth. Appl. Sci., 43 (2020), 305-319.  doi: 10.1002/mma.5880.  Google Scholar

[6]

D. Bainov and P. Simeonov, Theory of Impulsive Differential Equations, Series on Advances in Mathematics for Applied Sciences, vol. 28. Singapore, World Scientifc, 1995. doi: 10.1142/9789812831804.  Google Scholar

[7]

D. Bainov and P. Simeonov, Oscillation Theory of Impulsive Differential Equations, Interna-tional Publications, 1998.  Google Scholar

[8]

C. Cooke and J. Kroll, The existence of periodic solutions to certain impulsive differential equations, Comput. Math. Appl., 44 (2002), 667-676.  doi: 10.1016/S0898-1221(02)00181-5.  Google Scholar

[9]

X. Chang and Y. Li, Rotating periodic solutions of second order dissipative dynamical systems, Discret. Contin. Dyn. Syst., 36 (2016), 633-652.   Google Scholar

[10]

M. FečkanJ. Wang and Y. Zhou, Existence of periodic solutions for nonlinear evolution equations with non- instantaneous impulses, Nonauton. Dyn. Syst., 1 (2014), 93-101.   Google Scholar

[11]

M. FečkanR. Ma and B. Thompson, Forced symmetric oscillations, Bull. Belg. Math. Soc., 14 (2007), 73-85.  doi: 10.36045/bbms/1172852245.  Google Scholar

[12]

Y. LiF. CongZ. Lin and W. liu, Periodic solutions for evolution equations, Nonlinear Analysis: Theory, Methods and Applications, 36 (1999), 275-293.  doi: 10.1016/S0362-546X(97)00626-3.  Google Scholar

[13]

X. LiB. Martin and C. Wang, Impulsive differential equations: Periodic solutions and applications, Automatica, 52 (2015), 173-178.  doi: 10.1016/j.automatica.2014.11.009.  Google Scholar

[14]

M. LiJ. Wang and M. Fečkan, $(\omega, c)$-periodic solutions for impulsive differential systems, Communications Mathematical Analysis, 21 (2018), 35-46.   Google Scholar

[15]

K. LiuJ. WangD. O'Regan and M. Fečkan, A new class of $(\omega, c)$-periodic non-instantaneous impulsive differential equations, Mediterr. J. Math., 17 (2020), 155-177.  doi: 10.1007/s00009-020-01574-8.  Google Scholar

[16]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[17]

A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995. doi: 10.1142/9789812798664.  Google Scholar

[18]

C. Wang, Almost periodic solutions of impulsive BAM neural networks with variable delays on time scales, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 2828-2842.  doi: 10.1016/j.cnsns.2013.12.038.  Google Scholar

[19]

J. Wang and M. Fečkan, A general class of impulsive evolution equations, Topol. Meth. Nonlinear Anal., 46 (2015), 915-934.   Google Scholar

[20]

J. Wang, X. Xiang and W. Wei, Linear impulsive periodic system with time-varying generating operators on Banach space, Adv. Differ. Equ., (2007), 26196, 16 pp. doi: 10.1155/2007/26196.  Google Scholar

[1]

Christian Aarset, Christian Pötzsche. Bifurcations in periodic integrodifference equations in $ C(\Omega) $ I: Analytical results and applications. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 1-60. doi: 10.3934/dcdsb.2020231

[2]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[3]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[4]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[5]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[6]

Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228

[7]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

[8]

Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067

[9]

Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020123

[10]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[11]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[12]

Junchao Zhou, Yunge Xu, Lisha Wang, Nian Li. Nearly optimal codebooks from generalized Boolean bent functions over $ \mathbb{Z}_{4} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020121

[13]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[14]

Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041

[15]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[16]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[17]

Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293

[18]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020403

[19]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[20]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

2019 Impact Factor: 0.953

Article outline

[Back to Top]