In this paper, we consider a nonlinear fractional diffusion equations with a Riemann-Liouville derivative. First, we establish the global existence and uniqueness of mild solutions under some assumptions on the input data. Some regularity results for the mild solution and its derivatives of fractional orders are also derived. Our key idea is to combine the theories of Mittag-Leffler functions, Banach fixed point theorem and some Sobolev embeddings.
Citation: |
[1] |
E. A. Abdel-Rehim, From power laws to fractional diffusion processes with and without external forces, the non direct way., Fract. Calc. Appl. Anal., 22 (2019), 60-77.
doi: 10.1515/fca-2019-0004.![]() ![]() ![]() |
[2] |
M. Abramowitz and I. A. Stegun, Table Errata: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1972.
![]() |
[3] |
E. Alvarez, G. Ciprian, V. Keyantuo and M. Warma, Well-posedness results for a class of semi-linear super-diffusive equations, Nonlinear Anal., 181 (2019), 24-61.
doi: 10.1016/j.na.2018.10.016.![]() ![]() ![]() |
[4] |
L. Banjai and E. Otárola, A PDE approach to fractional diffusion: A space-fractional wave equation, Numer. Math., 143 (2019), 177-222.
doi: 10.1007/s00211-019-01055-5.![]() ![]() ![]() |
[5] |
M. Benchohra, S. Bouriah and J. J. Nieto, Existence and Ulam stability for nonlinear implicit differential equations with Riemann-Liouville fractional derivative, Demonstr. Math., 52 (2019), 437-450.
doi: 10.1515/dema-2019-0032.![]() ![]() ![]() |
[6] |
G. Di Blasio, Time and space Sobolev regularity of solutions to homogeneous parabolic equations, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 9 (1998), 89-94.
![]() ![]() |
[7] |
G. Di Blasio, Sobolev regularity for solutions of parabolic equations by extrapolation methods, Adv. Differential Equations, 6 (2001), 481-512.
![]() ![]() |
[8] |
G. Di Blasio, Maximal $L^p$ regularity for nonautonomous parabolic equations in extrapolation spaces, J. Evol. Equ., 6 (2006), 229-245.
doi: 10.1007/s00028-006-0241-3.![]() ![]() ![]() |
[9] |
M. Bonforte, Y. Sire and J. L. Vázquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains, Discrete Contin. Dyn. Syst., 35 (2015), 5725-5767.
doi: 10.3934/dcds.2015.35.5725.![]() ![]() ![]() |
[10] |
L. A. Caffarelli and P. R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 767-807.
doi: 10.1016/j.anihpc.2015.01.004.![]() ![]() ![]() |
[11] |
Y. Chen, H. Gao, M. Garrido-Atienza and B. Schmalfuss, Pathwise solutions of SPDEs driven by Hölder-continuous integrators with exponent larger than 1/2 and random dynamical systems, Discrete Contin. Dyn. Syst., 34 (2014), 79-98.
doi: 10.3934/dcds.2014.34.79.![]() ![]() ![]() |
[12] |
F. Colombo and D. Guidetti, A unified approach to nonlinear integro-differential inverse problems of parabolic type, Z. Anal. Anwendungen, 21 (2002), 431-464.
doi: 10.4171/ZAA/1086.![]() ![]() ![]() |
[13] |
C. G. Gal and M. Warma, Fractional in-Time Semilinear Parabolic Equations and Applications, Sprinter International Publishing, 2020,184 pp.
doi: 10.1007/978-3-030-45043-4.![]() ![]() |
[14] |
R. Gorenflo, A. A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag-Leffler functions, related topics and applications, Springer Monographs in Mathematics, Springer, Heidelberg, 2014.
doi: 10.1007/978-3-662-43930-2.![]() ![]() ![]() |
[15] |
R. Gorenflo, F. Mainardi, D. Moretti and P. Paradisi, Time fractional diffusion: A discrete random walk approach,, Nonlinear. Dynam., 29 (2002), 129-143.
doi: 10.1023/A:1016547232119.![]() ![]() ![]() |
[16] |
A. Khan, H. Khan, J. F. Gómez-Aguilar and T. Abdeljawad, Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equation with Mittag-Leffler kernel, Chaos Solitons Fractals, 127 (2019), 422-427.
doi: 10.1016/j.chaos.2019.07.026.![]() ![]() ![]() |
[17] |
H. Khan, J. F. Gómez-Aguilar, A. Khan and T. S. Khan, Stability analysis for fractional order advection-reaction diffusion system, Phys. A, 521 (2019), 737-751.
doi: 10.1016/j.physa.2019.01.102.![]() ![]() ![]() |
[18] |
Y. Kian, L. Oksanen, E. Soccorsi and M. Yamamoto, Global uniqueness in an inverse problem for time fractional diffusion equations, J. Differential Equations, 264 (2018), 1146-1170.
doi: 10.1016/j.jde.2017.09.032.![]() ![]() ![]() |
[19] |
B. Li and X. Xie, Regularity of solutions to time fractional diffusion equations, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 3195-3210.
doi: 10.3934/dcdsb.2018340.![]() ![]() ![]() |
[20] |
M. Magdziarz, R. Metzler, W. Szczotka and P. Zebrowski, doititleCorrelated continuous-time random walks in external force fields, Phys. Rev. E, 85 (2012), 051103.
doi: 10.1103/PhysRevE.85.051103.![]() ![]() |
[21] |
F. Mainardi, Fractional diffusive waves in viscoelastic solids Nonlinear Waves in Solids, Fairfield, NJ, ASME/AMR, 93–97.
![]() |
[22] |
R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach., Phys. Rep., 339 (2000), 77 pp.
doi: 10.1016/S0370-1573(00)00070-3.![]() ![]() ![]() |
[23] |
V. F. Morales-Delgado, J. F. Gómez-Aguilar, Khaled M. Saad, M. A. Khan and P. Agarwal, Analytic solution for oxygen diffusion from capillary to tissues involving external force effects: A fractional calculus approach., Phys. A, 523 (2019), 48-65.
doi: 10.1016/j.physa.2019.02.018.![]() ![]() ![]() |
[24] |
R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry, Phys. Stat. Sol. B, 133 (1986), 425-430.
doi: 10.1002/pssb.2221330150.![]() ![]() |
[25] |
R. H. Nochetto, E. Otárola and A. J. Salgado, A PDE approach to fractional diffusion in general domains: A priori error analysis, Found. Comput. Math., 15 (2015), 733-791.
doi: 10.1007/s10208-014-9208-x.![]() ![]() ![]() |
[26] |
I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, Vol. 198, Academic Press, Inc., San Diego, CA, 1999.
![]() ![]() |
[27] |
K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382 (2011), 426-447.
doi: 10.1016/j.jmaa.2011.04.058.![]() ![]() ![]() |
[28] |
T. Sandev, R. Metzler and V. Tomovski, Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative., J. Phys. A, 44 (2011), 255203, 21 pp.
doi: 10.1088/1751-8113/44/25/255203.![]() ![]() ![]() |
[29] |
H. Ye, J. Gao and Y. Ding, A generalized Grönwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.
doi: 10.1016/j.jmaa.2006.05.061.![]() ![]() ![]() |
[30] |
S. Zhang, Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives, Nonlinear Anal., 71 (2009), 2087–2093.
doi: 10.1016/j.na.2009.01.043.![]() ![]() ![]() |