doi: 10.3934/eect.2021007

Analysis of nonlinear fractional diffusion equations with a Riemann-liouville derivative

1. 

Division of Applied Mathematics, Thu Dau Mot University, Binh Duong Province, Vietnam

2. 

Faculty of Mathematics and Computer Science, University of Science, VNUHCM Ho Chi Minh City, Vietnam

3. 

Department of Applied Mathematics, Bharathiar University, Coimbatore 641 046, India

4. 

School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland

Corresponding author: Nguyen Huy Tuan (nguyenhuytuan@tdmu.edu.vn)

Received  May 2020 Revised  December 2020 Published  January 2021

Fund Project: This paper is supported by Thu Dau Mot University. The authors wish to express their sincere thanks to the referees and the editor for their valuable comments

In this paper, we consider a nonlinear fractional diffusion equations with a Riemann-Liouville derivative. First, we establish the global existence and uniqueness of mild solutions under some assumptions on the input data. Some regularity results for the mild solution and its derivatives of fractional orders are also derived. Our key idea is to combine the theories of Mittag-Leffler functions, Banach fixed point theorem and some Sobolev embeddings.

Citation: Tran Bao Ngoc, Nguyen Huy Tuan, R. Sakthivel, Donal O'Regan. Analysis of nonlinear fractional diffusion equations with a Riemann-liouville derivative. Evolution Equations & Control Theory, doi: 10.3934/eect.2021007
References:
[1]

E. A. Abdel-Rehim, From power laws to fractional diffusion processes with and without external forces, the non direct way., Fract. Calc. Appl. Anal., 22 (2019), 60-77.  doi: 10.1515/fca-2019-0004.  Google Scholar

[2]

M. Abramowitz and I. A. Stegun, Table Errata: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1972. Google Scholar

[3]

E. AlvarezG. CiprianV. Keyantuo and M. Warma, Well-posedness results for a class of semi-linear super-diffusive equations, Nonlinear Anal., 181 (2019), 24-61.  doi: 10.1016/j.na.2018.10.016.  Google Scholar

[4]

L. Banjai and E. Otárola, A PDE approach to fractional diffusion: A space-fractional wave equation, Numer. Math., 143 (2019), 177-222.  doi: 10.1007/s00211-019-01055-5.  Google Scholar

[5]

M. BenchohraS. Bouriah and J. J. Nieto, Existence and Ulam stability for nonlinear implicit differential equations with Riemann-Liouville fractional derivative, Demonstr. Math., 52 (2019), 437-450.  doi: 10.1515/dema-2019-0032.  Google Scholar

[6]

G. Di Blasio, Time and space Sobolev regularity of solutions to homogeneous parabolic equations, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 9 (1998), 89-94.   Google Scholar

[7]

G. Di Blasio, Sobolev regularity for solutions of parabolic equations by extrapolation methods, Adv. Differential Equations, 6 (2001), 481-512.   Google Scholar

[8]

G. Di Blasio, Maximal $L^p$ regularity for nonautonomous parabolic equations in extrapolation spaces, J. Evol. Equ., 6 (2006), 229-245.  doi: 10.1007/s00028-006-0241-3.  Google Scholar

[9]

M. BonforteY. Sire and J. L. Vázquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains, Discrete Contin. Dyn. Syst., 35 (2015), 5725-5767.  doi: 10.3934/dcds.2015.35.5725.  Google Scholar

[10]

L. A. Caffarelli and P. R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 767-807.  doi: 10.1016/j.anihpc.2015.01.004.  Google Scholar

[11]

Y. ChenH. GaoM. Garrido-Atienza and B. Schmalfuss, Pathwise solutions of SPDEs driven by Hölder-continuous integrators with exponent larger than 1/2 and random dynamical systems, Discrete Contin. Dyn. Syst., 34 (2014), 79-98.  doi: 10.3934/dcds.2014.34.79.  Google Scholar

[12]

F. Colombo and D. Guidetti, A unified approach to nonlinear integro-differential inverse problems of parabolic type, Z. Anal. Anwendungen, 21 (2002), 431-464.  doi: 10.4171/ZAA/1086.  Google Scholar

[13]

C. G. Gal and M. Warma, Fractional in-Time Semilinear Parabolic Equations and Applications, Sprinter International Publishing, 2020,184 pp. doi: 10.1007/978-3-030-45043-4.  Google Scholar

[14]

R. Gorenflo, A. A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag-Leffler functions, related topics and applications, Springer Monographs in Mathematics, Springer, Heidelberg, 2014. doi: 10.1007/978-3-662-43930-2.  Google Scholar

[15]

R. GorenfloF. MainardiD. Moretti and P. Paradisi, Time fractional diffusion: A discrete random walk approach,, Nonlinear. Dynam., 29 (2002), 129-143.  doi: 10.1023/A:1016547232119.  Google Scholar

[16]

A. KhanH. KhanJ. F. Gómez-Aguilar and T. Abdeljawad, Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equation with Mittag-Leffler kernel, Chaos Solitons Fractals, 127 (2019), 422-427.  doi: 10.1016/j.chaos.2019.07.026.  Google Scholar

[17]

H. KhanJ. F. Gómez-AguilarA. Khan and T. S. Khan, Stability analysis for fractional order advection-reaction diffusion system, Phys. A, 521 (2019), 737-751.  doi: 10.1016/j.physa.2019.01.102.  Google Scholar

[18]

Y. KianL. OksanenE. Soccorsi and M. Yamamoto, Global uniqueness in an inverse problem for time fractional diffusion equations, J. Differential Equations, 264 (2018), 1146-1170.  doi: 10.1016/j.jde.2017.09.032.  Google Scholar

[19]

B. Li and X. Xie, Regularity of solutions to time fractional diffusion equations, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 3195-3210.  doi: 10.3934/dcdsb.2018340.  Google Scholar

[20]

M. Magdziarz, R. Metzler, W. Szczotka and P. Zebrowski, doititleCorrelated continuous-time random walks in external force fields, Phys. Rev. E, 85 (2012), 051103. doi: 10.1103/PhysRevE.85.051103.  Google Scholar

[21]

F. Mainardi, Fractional diffusive waves in viscoelastic solids Nonlinear Waves in Solids, Fairfield, NJ, ASME/AMR, 93–97. Google Scholar

[22]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach., Phys. Rep., 339 (2000), 77 pp. doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[23]

V. F. Morales-DelgadoJ. F. Gómez-AguilarKhaled M. SaadM. A. Khan and P. Agarwal, Analytic solution for oxygen diffusion from capillary to tissues involving external force effects: A fractional calculus approach., Phys. A, 523 (2019), 48-65.  doi: 10.1016/j.physa.2019.02.018.  Google Scholar

[24]

R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry, Phys. Stat. Sol. B, 133 (1986), 425-430.  doi: 10.1002/pssb.2221330150.  Google Scholar

[25]

R. H. NochettoE. Otárola and A. J. Salgado, A PDE approach to fractional diffusion in general domains: A priori error analysis, Found. Comput. Math., 15 (2015), 733-791.  doi: 10.1007/s10208-014-9208-x.  Google Scholar

[26] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, Vol. 198, Academic Press, Inc., San Diego, CA, 1999.   Google Scholar
[27]

K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382 (2011), 426-447.  doi: 10.1016/j.jmaa.2011.04.058.  Google Scholar

[28]

T. Sandev, R. Metzler and V. Tomovski, Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative., J. Phys. A, 44 (2011), 255203, 21 pp. doi: 10.1088/1751-8113/44/25/255203.  Google Scholar

[29]

H. YeJ. Gao and Y. Ding, A generalized Grönwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.  doi: 10.1016/j.jmaa.2006.05.061.  Google Scholar

[30]

S. Zhang, Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives, Nonlinear Anal., 71 (2009), 2087–2093. doi: 10.1016/j.na.2009.01.043.  Google Scholar

show all references

References:
[1]

E. A. Abdel-Rehim, From power laws to fractional diffusion processes with and without external forces, the non direct way., Fract. Calc. Appl. Anal., 22 (2019), 60-77.  doi: 10.1515/fca-2019-0004.  Google Scholar

[2]

M. Abramowitz and I. A. Stegun, Table Errata: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1972. Google Scholar

[3]

E. AlvarezG. CiprianV. Keyantuo and M. Warma, Well-posedness results for a class of semi-linear super-diffusive equations, Nonlinear Anal., 181 (2019), 24-61.  doi: 10.1016/j.na.2018.10.016.  Google Scholar

[4]

L. Banjai and E. Otárola, A PDE approach to fractional diffusion: A space-fractional wave equation, Numer. Math., 143 (2019), 177-222.  doi: 10.1007/s00211-019-01055-5.  Google Scholar

[5]

M. BenchohraS. Bouriah and J. J. Nieto, Existence and Ulam stability for nonlinear implicit differential equations with Riemann-Liouville fractional derivative, Demonstr. Math., 52 (2019), 437-450.  doi: 10.1515/dema-2019-0032.  Google Scholar

[6]

G. Di Blasio, Time and space Sobolev regularity of solutions to homogeneous parabolic equations, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 9 (1998), 89-94.   Google Scholar

[7]

G. Di Blasio, Sobolev regularity for solutions of parabolic equations by extrapolation methods, Adv. Differential Equations, 6 (2001), 481-512.   Google Scholar

[8]

G. Di Blasio, Maximal $L^p$ regularity for nonautonomous parabolic equations in extrapolation spaces, J. Evol. Equ., 6 (2006), 229-245.  doi: 10.1007/s00028-006-0241-3.  Google Scholar

[9]

M. BonforteY. Sire and J. L. Vázquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains, Discrete Contin. Dyn. Syst., 35 (2015), 5725-5767.  doi: 10.3934/dcds.2015.35.5725.  Google Scholar

[10]

L. A. Caffarelli and P. R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 767-807.  doi: 10.1016/j.anihpc.2015.01.004.  Google Scholar

[11]

Y. ChenH. GaoM. Garrido-Atienza and B. Schmalfuss, Pathwise solutions of SPDEs driven by Hölder-continuous integrators with exponent larger than 1/2 and random dynamical systems, Discrete Contin. Dyn. Syst., 34 (2014), 79-98.  doi: 10.3934/dcds.2014.34.79.  Google Scholar

[12]

F. Colombo and D. Guidetti, A unified approach to nonlinear integro-differential inverse problems of parabolic type, Z. Anal. Anwendungen, 21 (2002), 431-464.  doi: 10.4171/ZAA/1086.  Google Scholar

[13]

C. G. Gal and M. Warma, Fractional in-Time Semilinear Parabolic Equations and Applications, Sprinter International Publishing, 2020,184 pp. doi: 10.1007/978-3-030-45043-4.  Google Scholar

[14]

R. Gorenflo, A. A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag-Leffler functions, related topics and applications, Springer Monographs in Mathematics, Springer, Heidelberg, 2014. doi: 10.1007/978-3-662-43930-2.  Google Scholar

[15]

R. GorenfloF. MainardiD. Moretti and P. Paradisi, Time fractional diffusion: A discrete random walk approach,, Nonlinear. Dynam., 29 (2002), 129-143.  doi: 10.1023/A:1016547232119.  Google Scholar

[16]

A. KhanH. KhanJ. F. Gómez-Aguilar and T. Abdeljawad, Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equation with Mittag-Leffler kernel, Chaos Solitons Fractals, 127 (2019), 422-427.  doi: 10.1016/j.chaos.2019.07.026.  Google Scholar

[17]

H. KhanJ. F. Gómez-AguilarA. Khan and T. S. Khan, Stability analysis for fractional order advection-reaction diffusion system, Phys. A, 521 (2019), 737-751.  doi: 10.1016/j.physa.2019.01.102.  Google Scholar

[18]

Y. KianL. OksanenE. Soccorsi and M. Yamamoto, Global uniqueness in an inverse problem for time fractional diffusion equations, J. Differential Equations, 264 (2018), 1146-1170.  doi: 10.1016/j.jde.2017.09.032.  Google Scholar

[19]

B. Li and X. Xie, Regularity of solutions to time fractional diffusion equations, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 3195-3210.  doi: 10.3934/dcdsb.2018340.  Google Scholar

[20]

M. Magdziarz, R. Metzler, W. Szczotka and P. Zebrowski, doititleCorrelated continuous-time random walks in external force fields, Phys. Rev. E, 85 (2012), 051103. doi: 10.1103/PhysRevE.85.051103.  Google Scholar

[21]

F. Mainardi, Fractional diffusive waves in viscoelastic solids Nonlinear Waves in Solids, Fairfield, NJ, ASME/AMR, 93–97. Google Scholar

[22]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach., Phys. Rep., 339 (2000), 77 pp. doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[23]

V. F. Morales-DelgadoJ. F. Gómez-AguilarKhaled M. SaadM. A. Khan and P. Agarwal, Analytic solution for oxygen diffusion from capillary to tissues involving external force effects: A fractional calculus approach., Phys. A, 523 (2019), 48-65.  doi: 10.1016/j.physa.2019.02.018.  Google Scholar

[24]

R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry, Phys. Stat. Sol. B, 133 (1986), 425-430.  doi: 10.1002/pssb.2221330150.  Google Scholar

[25]

R. H. NochettoE. Otárola and A. J. Salgado, A PDE approach to fractional diffusion in general domains: A priori error analysis, Found. Comput. Math., 15 (2015), 733-791.  doi: 10.1007/s10208-014-9208-x.  Google Scholar

[26] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, Vol. 198, Academic Press, Inc., San Diego, CA, 1999.   Google Scholar
[27]

K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382 (2011), 426-447.  doi: 10.1016/j.jmaa.2011.04.058.  Google Scholar

[28]

T. Sandev, R. Metzler and V. Tomovski, Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative., J. Phys. A, 44 (2011), 255203, 21 pp. doi: 10.1088/1751-8113/44/25/255203.  Google Scholar

[29]

H. YeJ. Gao and Y. Ding, A generalized Grönwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.  doi: 10.1016/j.jmaa.2006.05.061.  Google Scholar

[30]

S. Zhang, Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives, Nonlinear Anal., 71 (2009), 2087–2093. doi: 10.1016/j.na.2009.01.043.  Google Scholar

[1]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[2]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[3]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[4]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[5]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[6]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[7]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[8]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[9]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[10]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[11]

Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341

[12]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[13]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[14]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[15]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[16]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[17]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[18]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[19]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[20]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

2019 Impact Factor: 0.953

Article outline

[Back to Top]