• Previous Article
    A nonlocal Weickert type PDE applied to multi-frame super-resolution
  • EECT Home
  • This Issue
  • Next Article
    Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory"
doi: 10.3934/eect.2021008

Almost periodic type functions and densities

Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21125 Novi Sad, Serbia

* Corresponding author: Marko Kostić

Received  July 2020 Published  January 2021

Fund Project: The author is supported by grant no. 451-03-68/2020/14/200156, Ministry of Science and Technological Development, Republic of Serbia

In this paper, we introduce and analyze the notions of $ \odot_{g} $-almost periodicity and Stepanov $ \odot_{g} $-almost periodicity for functions with values in complex Banach spaces. In order to do that, we use the recently introduced notions of lower and upper (Banach) $ g $-densities. We also analyze uniformly recurrent functions, generalized almost automorphic functions and apply our results in the qualitative analysis of solutions of inhomogeneous abstract integro-differential inclusions. We present plenty of illustrative examples, results of independent interest, questions and unsolved problems.

Citation: Marko Kostić. Almost periodic type functions and densities. Evolution Equations & Control Theory, doi: 10.3934/eect.2021008
References:
[1]

S. Abbas, A note on Weyl pseudo almost automorphic functions and their properties, Math. Sci. (Springer), 6 (2012), 5 pp. doi: 10.1186/2251-7456-6-29.  Google Scholar

[2]

B. Basit, Some problems concerning different types of vector valued almost periodic functions, Dissertationes Math., 338 (1995), 26 pp.  Google Scholar

[3]

B. Basit and H. Güenzler, On spectral criteria for solutions of evolution equations and comments on reduced spectra, Far East J. Math. Sci. (FJMS), 65 (2012), 273-288.   Google Scholar

[4]

M. V. Bebutov, On dynamical systems in the space of continuous functions, Byull. Moskov. Gos. Univ. Mat., 2 (1940), 1-52.   Google Scholar

[5]

A. S. Besicovitch, Almost Periodic Functions, Dover Publications, Inc., New York, 1955.  Google Scholar

[6]

H. Bohr, Zur theorie der fastperiodischen Funktionen Ⅰ; Ⅱ; Ⅲ, Acta Math., 45 (1924), 29–127; H6 (1925), 101–214; H5 (1926), 237–281. doi: 10.1007/BF02395468.  Google Scholar

[7]

H. Bohr, Almost Periodic Functions, Chelsea Publishing Company, New York, N.Y., 1947.  Google Scholar

[8]

L. I. Danilov, The uniform approximation of recurrent functions and almost recurrent functions, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 4 (2013), 36-54.   Google Scholar

[9]

J. de Vries, Elements of Topological Dynamics, Mathematics and its Applications, vol. 257, Kluwer Academic Publishers Group, Dordrecht, 1993. doi: 10.1007/978-94-015-8171-4.  Google Scholar

[10]

T. Diagana, Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, Springer, Cham, 2013. doi: 10.1007/978-3-319-00849-3.  Google Scholar

[11]

H.-S. DingJ. Liang and T.-J. Xiao, Some properties of Stepanov-like almost automorphic functions and applications to abstract evolution equations, Appl. Anal., 88 (2009), 1079-1091.  doi: 10.1080/00036810903156164.  Google Scholar

[12]

H.-S. DingW. Long and G. M. N'Guérékata, Almost periodic solutions to abstract semilinear evolution equations with Stepanov almost periodic coefficients, J. Comput. Anal. Appl., 13 (2011), 231-242.   Google Scholar

[13]

H.-S. Ding and S.-M. Wan, Asymptotically almost automorphic solutions of differential equations with piecewise constant argument, Open Math., 15 (2017), 595-610.  doi: 10.1515/math-2017-0051.  Google Scholar

[14]

T. Eisner, B. Farkas, M. Haase and R. Nagel, Operator Theoretic Aspects of Ergodic Theory, Graduate Text in Mathematics, vol. 272, Springer, Cham, 2015. doi: 10.1007/978-3-319-16898-2.  Google Scholar

[15]

K.-J. Engel and R. Nagel, One–Parameter Semigroups for Linear Evolution Equations, Springer–Verlag, New York, 2000.  Google Scholar

[16]

A. M. Fink, Almost Periodic Differential Equations, Springer-Verlag, Berlin-New York, 1974.  Google Scholar

[17]

A. M. Fink, Extensions of almost automorphic sequences, J. Math. Anal. Appl., 27 (1969), 519-523.  doi: 10.1016/0022-247X(69)90132-2.  Google Scholar

[18]

A. M. Fink, Almost Periodic Points in Topological Transformation Semi-groups, Ph.D thesis, Iowa State University, Digital Repository (1960), 44 pp.  Google Scholar

[19]

A. Geroldinger and I. Z. Ruzsa, Combinatorial Number Theory and Additive Group Theory, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8962-8.  Google Scholar

[20]

G. GrekosV. Toma and J. Tomanová, A note on uniform or Banach density, Ann. Math. Blaise Pascal, 17 (2010), 153-163.  doi: 10.5802/ambp.280.  Google Scholar

[21]

G. M. N'Guérékata, Almost Automorphic and Almost Periodic Functions in Abstract Spaces, Kluwer Academic/Plenum Publishers, New York, 2001. doi: 10.1007/978-1-4757-4482-8.  Google Scholar

[22]

G. M. N'Guérékata, Topics in Almost Automorphy, Springer–Verlag, New York, 2005.  Google Scholar

[23]

G. M. N'Guérékata and A. Pankov, Stepanov-like almost automorphic functions and monotone evolution equations, Nonlinear Anal., 68 (2008), 2658-2667.  doi: 10.1016/j.na.2007.02.012.  Google Scholar

[24]

A. Haraux, Asymptotic behavior of trajectories for some nonautonomous, almost periodic processes, J. Differential Equations, 49 (1983), 473-483.  doi: 10.1016/0022-0396(83)90008-6.  Google Scholar

[25]

A. Haraux and P. Souplet, An example of uniformly recurrent function which is not almost periodic, J. Fourier Anal. Appl., 10 (2004), 217-220.  doi: 10.1007/s00041-004-8012-4.  Google Scholar

[26]

H. R. Henríquez, On Stepanov-almost periodic semigroups and cosine functions of operators, J. Math. Anal. Appl., 146 (1990), 420-433.   Google Scholar

[27]

E. Hille, Functional Analysis and Semi-Groups, American Mathematical Society, New York, 1948.  Google Scholar

[28]

D. Ji and Y. Lu, Stepanov-like pseudo almost automorphic solution to a parabolic evolution equation, Adv. Difference Equ., 341 (2015), 17 pp. doi: 10.1186/s13662-015-0667-4.  Google Scholar

[29]

M. Kostić, Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations, De Gruyter, Berlin, 2019. doi: 10.1515/9783110641851.  Google Scholar

[30]

M. Kostić, Chaos for Linear Operators and Abstract Differential Equations, Nova Science Publishers Inc., New York, 2020. Google Scholar

[31]

M. Kostić, ${\mathcal F}$-Hypercyclic operators on Fréchet spaces, Publ. Inst. Math. (Beograd) (N.S.), 106 (2019), 1-18.  doi: 10.2298/pim1920001k.  Google Scholar

[32]

M. Kostić, Quasi-asymptotically almost periodic functions and applications, Bull. Braz. Math. Soc., New Series, (2020). doi: 10.1007/s00574-020-00197-7.  Google Scholar

[33]

B. M. Levitan, Počti-periodičeskie funkcii, (Russian) [Almost Periodic Functions]  Google Scholar

[34] B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge Univ. Press, London, 1982.   Google Scholar
[35]

P. Ribenboim, Density results on families of Diophantine equations with finitely many solutions, Enseign. Math. (2), 39 (1993), 3-23.   Google Scholar

[36]

A. M. Samoilenko and S. I. Trofimchuk, Unbounded functions with almost periodic differences, Ukrainian Math. J., 43 (1991), 1306-1309.  doi: 10.1007/BF01061818.  Google Scholar

[37]

W. A. Veech, Almost automorphic functions on groups, Amer. J. Math., 87 (1965), 719-751.  doi: 10.2307/2373071.  Google Scholar

[38]

W. A. Veech, On a theorem of Bochner, Ann. of Math., 86 (1967), 117-137.  doi: 10.2307/1970363.  Google Scholar

[39]

R. Xie and C. Zhang, Space of $\omega$-periodic limit functions and its applications to an abstract Cauchy problem, J. Function Spaces, vol. 2015, Art. ID 953540, 10 pp. doi: 10.1155/2015/953540.  Google Scholar

[40]

S. Zaidman, Almost-Periodic Functions in Abstract Spaces, Research Notes in Math., vol.126, Pitman, Boston, MA, 1985.  Google Scholar

[41]

C. Zhang, Ergodicity and asymptotically almost periodic solutions of some differential equations, Int. J. Math. Math. Sci., 25 (2001), 787-800.  doi: 10.1155/S016117120100429X.  Google Scholar

[42]

H. Y. Zhao and M. Fečkan, Pseudo almost periodic solutions of an iterative equation with variable coefficients, Miskolc Math. Notes, 18 (2017), 515-524.  doi: 10.18514/MMN.2017.2047.  Google Scholar

show all references

References:
[1]

S. Abbas, A note on Weyl pseudo almost automorphic functions and their properties, Math. Sci. (Springer), 6 (2012), 5 pp. doi: 10.1186/2251-7456-6-29.  Google Scholar

[2]

B. Basit, Some problems concerning different types of vector valued almost periodic functions, Dissertationes Math., 338 (1995), 26 pp.  Google Scholar

[3]

B. Basit and H. Güenzler, On spectral criteria for solutions of evolution equations and comments on reduced spectra, Far East J. Math. Sci. (FJMS), 65 (2012), 273-288.   Google Scholar

[4]

M. V. Bebutov, On dynamical systems in the space of continuous functions, Byull. Moskov. Gos. Univ. Mat., 2 (1940), 1-52.   Google Scholar

[5]

A. S. Besicovitch, Almost Periodic Functions, Dover Publications, Inc., New York, 1955.  Google Scholar

[6]

H. Bohr, Zur theorie der fastperiodischen Funktionen Ⅰ; Ⅱ; Ⅲ, Acta Math., 45 (1924), 29–127; H6 (1925), 101–214; H5 (1926), 237–281. doi: 10.1007/BF02395468.  Google Scholar

[7]

H. Bohr, Almost Periodic Functions, Chelsea Publishing Company, New York, N.Y., 1947.  Google Scholar

[8]

L. I. Danilov, The uniform approximation of recurrent functions and almost recurrent functions, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 4 (2013), 36-54.   Google Scholar

[9]

J. de Vries, Elements of Topological Dynamics, Mathematics and its Applications, vol. 257, Kluwer Academic Publishers Group, Dordrecht, 1993. doi: 10.1007/978-94-015-8171-4.  Google Scholar

[10]

T. Diagana, Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, Springer, Cham, 2013. doi: 10.1007/978-3-319-00849-3.  Google Scholar

[11]

H.-S. DingJ. Liang and T.-J. Xiao, Some properties of Stepanov-like almost automorphic functions and applications to abstract evolution equations, Appl. Anal., 88 (2009), 1079-1091.  doi: 10.1080/00036810903156164.  Google Scholar

[12]

H.-S. DingW. Long and G. M. N'Guérékata, Almost periodic solutions to abstract semilinear evolution equations with Stepanov almost periodic coefficients, J. Comput. Anal. Appl., 13 (2011), 231-242.   Google Scholar

[13]

H.-S. Ding and S.-M. Wan, Asymptotically almost automorphic solutions of differential equations with piecewise constant argument, Open Math., 15 (2017), 595-610.  doi: 10.1515/math-2017-0051.  Google Scholar

[14]

T. Eisner, B. Farkas, M. Haase and R. Nagel, Operator Theoretic Aspects of Ergodic Theory, Graduate Text in Mathematics, vol. 272, Springer, Cham, 2015. doi: 10.1007/978-3-319-16898-2.  Google Scholar

[15]

K.-J. Engel and R. Nagel, One–Parameter Semigroups for Linear Evolution Equations, Springer–Verlag, New York, 2000.  Google Scholar

[16]

A. M. Fink, Almost Periodic Differential Equations, Springer-Verlag, Berlin-New York, 1974.  Google Scholar

[17]

A. M. Fink, Extensions of almost automorphic sequences, J. Math. Anal. Appl., 27 (1969), 519-523.  doi: 10.1016/0022-247X(69)90132-2.  Google Scholar

[18]

A. M. Fink, Almost Periodic Points in Topological Transformation Semi-groups, Ph.D thesis, Iowa State University, Digital Repository (1960), 44 pp.  Google Scholar

[19]

A. Geroldinger and I. Z. Ruzsa, Combinatorial Number Theory and Additive Group Theory, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8962-8.  Google Scholar

[20]

G. GrekosV. Toma and J. Tomanová, A note on uniform or Banach density, Ann. Math. Blaise Pascal, 17 (2010), 153-163.  doi: 10.5802/ambp.280.  Google Scholar

[21]

G. M. N'Guérékata, Almost Automorphic and Almost Periodic Functions in Abstract Spaces, Kluwer Academic/Plenum Publishers, New York, 2001. doi: 10.1007/978-1-4757-4482-8.  Google Scholar

[22]

G. M. N'Guérékata, Topics in Almost Automorphy, Springer–Verlag, New York, 2005.  Google Scholar

[23]

G. M. N'Guérékata and A. Pankov, Stepanov-like almost automorphic functions and monotone evolution equations, Nonlinear Anal., 68 (2008), 2658-2667.  doi: 10.1016/j.na.2007.02.012.  Google Scholar

[24]

A. Haraux, Asymptotic behavior of trajectories for some nonautonomous, almost periodic processes, J. Differential Equations, 49 (1983), 473-483.  doi: 10.1016/0022-0396(83)90008-6.  Google Scholar

[25]

A. Haraux and P. Souplet, An example of uniformly recurrent function which is not almost periodic, J. Fourier Anal. Appl., 10 (2004), 217-220.  doi: 10.1007/s00041-004-8012-4.  Google Scholar

[26]

H. R. Henríquez, On Stepanov-almost periodic semigroups and cosine functions of operators, J. Math. Anal. Appl., 146 (1990), 420-433.   Google Scholar

[27]

E. Hille, Functional Analysis and Semi-Groups, American Mathematical Society, New York, 1948.  Google Scholar

[28]

D. Ji and Y. Lu, Stepanov-like pseudo almost automorphic solution to a parabolic evolution equation, Adv. Difference Equ., 341 (2015), 17 pp. doi: 10.1186/s13662-015-0667-4.  Google Scholar

[29]

M. Kostić, Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations, De Gruyter, Berlin, 2019. doi: 10.1515/9783110641851.  Google Scholar

[30]

M. Kostić, Chaos for Linear Operators and Abstract Differential Equations, Nova Science Publishers Inc., New York, 2020. Google Scholar

[31]

M. Kostić, ${\mathcal F}$-Hypercyclic operators on Fréchet spaces, Publ. Inst. Math. (Beograd) (N.S.), 106 (2019), 1-18.  doi: 10.2298/pim1920001k.  Google Scholar

[32]

M. Kostić, Quasi-asymptotically almost periodic functions and applications, Bull. Braz. Math. Soc., New Series, (2020). doi: 10.1007/s00574-020-00197-7.  Google Scholar

[33]

B. M. Levitan, Počti-periodičeskie funkcii, (Russian) [Almost Periodic Functions]  Google Scholar

[34] B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge Univ. Press, London, 1982.   Google Scholar
[35]

P. Ribenboim, Density results on families of Diophantine equations with finitely many solutions, Enseign. Math. (2), 39 (1993), 3-23.   Google Scholar

[36]

A. M. Samoilenko and S. I. Trofimchuk, Unbounded functions with almost periodic differences, Ukrainian Math. J., 43 (1991), 1306-1309.  doi: 10.1007/BF01061818.  Google Scholar

[37]

W. A. Veech, Almost automorphic functions on groups, Amer. J. Math., 87 (1965), 719-751.  doi: 10.2307/2373071.  Google Scholar

[38]

W. A. Veech, On a theorem of Bochner, Ann. of Math., 86 (1967), 117-137.  doi: 10.2307/1970363.  Google Scholar

[39]

R. Xie and C. Zhang, Space of $\omega$-periodic limit functions and its applications to an abstract Cauchy problem, J. Function Spaces, vol. 2015, Art. ID 953540, 10 pp. doi: 10.1155/2015/953540.  Google Scholar

[40]

S. Zaidman, Almost-Periodic Functions in Abstract Spaces, Research Notes in Math., vol.126, Pitman, Boston, MA, 1985.  Google Scholar

[41]

C. Zhang, Ergodicity and asymptotically almost periodic solutions of some differential equations, Int. J. Math. Math. Sci., 25 (2001), 787-800.  doi: 10.1155/S016117120100429X.  Google Scholar

[42]

H. Y. Zhao and M. Fečkan, Pseudo almost periodic solutions of an iterative equation with variable coefficients, Miskolc Math. Notes, 18 (2017), 515-524.  doi: 10.18514/MMN.2017.2047.  Google Scholar

[1]

Yubo Chen, Wan Zhuang. The extreme solutions of PBVP for integro-differential equations with caratheodory functions. Conference Publications, 1998, 1998 (Special) : 160-166. doi: 10.3934/proc.1998.1998.160

[2]

Tomás Caraballo, David Cheban. Almost periodic and almost automorphic solutions of linear differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (5) : 1857-1882. doi: 10.3934/dcds.2013.33.1857

[3]

Chao Wang, Ravi P Agarwal. Almost automorphic functions on semigroups induced by complete-closed time scales and application to dynamic equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 781-798. doi: 10.3934/dcdsb.2019267

[4]

Gaston Mandata N ' Guerekata. Remarks on almost automorphic differential equations. Conference Publications, 2001, 2001 (Special) : 276-279. doi: 10.3934/proc.2001.2001.276

[5]

Felipe García-Ramos, Brian Marcus. Mean sensitive, mean equicontinuous and almost periodic functions for dynamical systems. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 729-746. doi: 10.3934/dcds.2019030

[6]

Hailong Zhu, Jifeng Chu, Weinian Zhang. Mean-square almost automorphic solutions for stochastic differential equations with hyperbolicity. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 1935-1953. doi: 10.3934/dcds.2018078

[7]

Aníbal Coronel, Christopher Maulén, Manuel Pinto, Daniel Sepúlveda. Almost automorphic delayed differential equations and Lasota-Wazewska model. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 1959-1977. doi: 10.3934/dcds.2017083

[8]

Sebti Kerbal, Yang Jiang. General integro-differential equations and optimal controls on Banach spaces. Journal of Industrial & Management Optimization, 2007, 3 (1) : 119-128. doi: 10.3934/jimo.2007.3.119

[9]

Gaston N'Guerekata. On weak-almost periodic mild solutions of some linear abstract differential equations. Conference Publications, 2003, 2003 (Special) : 672-677. doi: 10.3934/proc.2003.2003.672

[10]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[11]

Jean Mawhin, James R. Ward Jr. Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete & Continuous Dynamical Systems, 2002, 8 (1) : 39-54. doi: 10.3934/dcds.2002.8.39

[12]

Rui Zhang, Yong-Kui Chang, G. M. N'Guérékata. Weighted pseudo almost automorphic mild solutions to semilinear integral equations with $S^{p}$-weighted pseudo almost automorphic coefficients. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5525-5537. doi: 10.3934/dcds.2013.33.5525

[13]

Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021016

[14]

Xianhua Huang. Almost periodic and periodic solutions of certain dissipative delay differential equations. Conference Publications, 1998, 1998 (Special) : 301-313. doi: 10.3934/proc.1998.1998.301

[15]

Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure & Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291

[16]

Bixiang Wang. Stochastic bifurcation of pathwise random almost periodic and almost automorphic solutions for random dynamical systems. Discrete & Continuous Dynamical Systems, 2015, 35 (8) : 3745-3769. doi: 10.3934/dcds.2015.35.3745

[17]

Yang Yang, Xiaohu Tang, Guang Gong. New almost perfect, odd perfect, and perfect sequences from difference balanced functions with d-form property. Advances in Mathematics of Communications, 2017, 11 (1) : 67-76. doi: 10.3934/amc.2017002

[18]

Khalida Inayat Noor, Muhammad Aslam Noor. Higher order uniformly close-to-convex functions. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1277-1290. doi: 10.3934/dcdss.2015.8.1277

[19]

Yong Li, Zhenxin Liu, Wenhe Wang. Almost periodic solutions and stable solutions for stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5927-5944. doi: 10.3934/dcdsb.2019113

[20]

Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (39)
  • HTML views (124)
  • Cited by (0)

Other articles
by authors

[Back to Top]