• Previous Article
    Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces
  • EECT Home
  • This Issue
  • Next Article
    Results on controllability of non-densely characterized neutral fractional delay differential system
doi: 10.3934/eect.2021009

On some damped 2 body problems

Sorbonne Université, Université Paris-Diderot SPC, CNRS, INRIA, Laboratoire Jacques-Louis Lions, LJLL, F-75005, Paris, France

Received  December 2020 Published  January 2021

The usual equation for both motions of a single planet around the sun and electrons in the deterministic Rutherford-Bohr atomic model is conservative with a singular potential at the origin. When a dissipation is added, new phenomena appear which were investigated thoroughly by R. Ortega and his co-authors between 2014 and 2017, in particular all solutions are bounded and tend to $ 0 $ for $ t $ large, some of them with asymptotically spiraling exponentially fast convergence to the center. We provide explicit estimates for the bounds in the general case that we refine under specific restrictions on the initial state, and we give a formal calculation which could be used to determine practically some special asymptotically spiraling orbits. Besides, a related model with exponentially damped central charge or mass gives some explicit exponentially decaying solutions which might help future investigations. An atomic contraction hypothesis related to the asymptotic dying off of solutions proven for the dissipative model might give a solution to some intriguing phenomena observed in paleontology, familiar electrical devices and high scale cosmology.

Citation: Alain Haraux. On some damped 2 body problems. Evolution Equations & Control Theory, doi: 10.3934/eect.2021009
References:
[1]

N. Bohr, On the constitution of atoms and molecules, Philosophical Magazine, 26 (1913), 1-24.   Google Scholar

[2]

H. Chabot, Georges-Louis LeSage (1724–1803): A theoretician of gravitation in search of legitimacy, Arch. Internat. Hist. Sci., 53 (2003), 157-183.   Google Scholar

[3]

M. R. Edwards, Pushing gravity: New perspectives on LeSage's theory of gravitation, Revue d'Histoire des Sciences, 58 (2005), 519-520.   Google Scholar

[4]

M. R. Edwards, Photon-graviton recycling as cause of gravitation, Apeiron, 14 (2007), 214-230.   Google Scholar

[5]

G. Galilei, Two New Sciences, The University of Wisconsin Press, Madison, Wis., 1974.  Google Scholar

[6]

A. Haraux, About Dark Matter and Gravitation, preprint, (2020), 2020070198. doi: 10.20944/preprints202007.0198.v1.  Google Scholar

[7]

A. Haraux, On Carboniferous Gigantism and Atomic Shrinking, preprint, (2020), 2020110544. doi: 10.20944/preprints202011.0544.v2.  Google Scholar

[8]

J. F. HarrisonA. Kaiser and J. M. VandenBrooks, Atmospheric oxygen level and the evolution of insect body size, Proceedings of the Royal Society B, 277 (2010), 1937-1946.  doi: 10.1098/rspb.2010.0001.  Google Scholar

[9]

E. Hubble and M. L. Humason, The velocity-distance relation among extra-galactic nebulae, Astrophysical Journal, vol. 74, 43–80. doi: 10.1086/143323.  Google Scholar

[10]

L. D. Landau and E. M. Lifschitz, Mechanics, Course of Theoretical Physics, Vol. 1, Mir Editions, Moscow, 1966. Google Scholar

[11]

A. MargheriR. Ortega and C. Rebelo, First integrals for the Kepler problem with linear drag, Celestial Mech. Dynam. Astronom, 127 (2017), 35-48.  doi: 10.1007/s10569-016-9715-y.  Google Scholar

[12]

A. MargheriR. Ortega and C. Rebelo, On a family of Kepler problems with linear dissipation, Rend. Istit. Mat. Univ. Trieste, 49 (2017), 265-286.  doi: 10.13137/2464-8728/16216.  Google Scholar

[13]

R. Parks, An Overview of Hypotheses and Supporting Evidence Regarding Drivers of Insect Gigantism in the Permo-Carboniferous, Western Washington University Reports, (2020), 1–13. Google Scholar

[14]

R. Penrose, The big bang and its dark-matter content: whence, whither, and wherefore, Found Phys., 48 (2018), 1177-1190.  doi: 10.1007/s10701-018-0162-3.  Google Scholar

[15]

E. Rutherford, The scattering of $\alpha$ and $\beta$ particles by matter and the structure of the atom, E. Rutherford, F.R.S. Philosophical Magazine, 21 (1911), 669-688.   Google Scholar

[16]

E. Schrödinger, An undulatory theory of the mechanics of atoms and molecules, Phys. Rev., 28 (1926), 1049-1070.  doi: 10.1103/PhysRev.28.1049.  Google Scholar

[17]

F. Zwicky, The redshift of extragalactic nebulae, Helvetica Physica Acta, 6 (1933), 110-127.   Google Scholar

show all references

References:
[1]

N. Bohr, On the constitution of atoms and molecules, Philosophical Magazine, 26 (1913), 1-24.   Google Scholar

[2]

H. Chabot, Georges-Louis LeSage (1724–1803): A theoretician of gravitation in search of legitimacy, Arch. Internat. Hist. Sci., 53 (2003), 157-183.   Google Scholar

[3]

M. R. Edwards, Pushing gravity: New perspectives on LeSage's theory of gravitation, Revue d'Histoire des Sciences, 58 (2005), 519-520.   Google Scholar

[4]

M. R. Edwards, Photon-graviton recycling as cause of gravitation, Apeiron, 14 (2007), 214-230.   Google Scholar

[5]

G. Galilei, Two New Sciences, The University of Wisconsin Press, Madison, Wis., 1974.  Google Scholar

[6]

A. Haraux, About Dark Matter and Gravitation, preprint, (2020), 2020070198. doi: 10.20944/preprints202007.0198.v1.  Google Scholar

[7]

A. Haraux, On Carboniferous Gigantism and Atomic Shrinking, preprint, (2020), 2020110544. doi: 10.20944/preprints202011.0544.v2.  Google Scholar

[8]

J. F. HarrisonA. Kaiser and J. M. VandenBrooks, Atmospheric oxygen level and the evolution of insect body size, Proceedings of the Royal Society B, 277 (2010), 1937-1946.  doi: 10.1098/rspb.2010.0001.  Google Scholar

[9]

E. Hubble and M. L. Humason, The velocity-distance relation among extra-galactic nebulae, Astrophysical Journal, vol. 74, 43–80. doi: 10.1086/143323.  Google Scholar

[10]

L. D. Landau and E. M. Lifschitz, Mechanics, Course of Theoretical Physics, Vol. 1, Mir Editions, Moscow, 1966. Google Scholar

[11]

A. MargheriR. Ortega and C. Rebelo, First integrals for the Kepler problem with linear drag, Celestial Mech. Dynam. Astronom, 127 (2017), 35-48.  doi: 10.1007/s10569-016-9715-y.  Google Scholar

[12]

A. MargheriR. Ortega and C. Rebelo, On a family of Kepler problems with linear dissipation, Rend. Istit. Mat. Univ. Trieste, 49 (2017), 265-286.  doi: 10.13137/2464-8728/16216.  Google Scholar

[13]

R. Parks, An Overview of Hypotheses and Supporting Evidence Regarding Drivers of Insect Gigantism in the Permo-Carboniferous, Western Washington University Reports, (2020), 1–13. Google Scholar

[14]

R. Penrose, The big bang and its dark-matter content: whence, whither, and wherefore, Found Phys., 48 (2018), 1177-1190.  doi: 10.1007/s10701-018-0162-3.  Google Scholar

[15]

E. Rutherford, The scattering of $\alpha$ and $\beta$ particles by matter and the structure of the atom, E. Rutherford, F.R.S. Philosophical Magazine, 21 (1911), 669-688.   Google Scholar

[16]

E. Schrödinger, An undulatory theory of the mechanics of atoms and molecules, Phys. Rev., 28 (1926), 1049-1070.  doi: 10.1103/PhysRev.28.1049.  Google Scholar

[17]

F. Zwicky, The redshift of extragalactic nebulae, Helvetica Physica Acta, 6 (1933), 110-127.   Google Scholar

[1]

Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042

[2]

Jean Mawhin. Periodic solutions of second order Lagrangian difference systems with bounded or singular $\phi$-Laplacian and periodic potential. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1065-1076. doi: 10.3934/dcdss.2013.6.1065

[3]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[4]

Peter Giesl. Converse theorem on a global contraction metric for a periodic orbit. Discrete & Continuous Dynamical Systems, 2019, 39 (9) : 5339-5363. doi: 10.3934/dcds.2019218

[5]

Zongming Guo, Xuefei Bai. On the global branch of positive radial solutions of an elliptic problem with singular nonlinearity. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1091-1107. doi: 10.3934/cpaa.2008.7.1091

[6]

Dong Li, Xiaoyi Zhang. Global wellposedness and blowup of solutions to a nonlocal evolution problem with singular kernels. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1591-1606. doi: 10.3934/cpaa.2010.9.1591

[7]

Xiangdong Zhao. Global boundedness of classical solutions to a logistic chemotaxis system with singular sensitivity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 5095-5100. doi: 10.3934/dcdsb.2020334

[8]

Boumediene Abdellaoui, Ahmed Attar. Quasilinear elliptic problem with Hardy potential and singular term. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1363-1380. doi: 10.3934/cpaa.2013.12.1363

[9]

Laurence Cherfils, Stefania Gatti, Alain Miranville. A doubly nonlinear parabolic equation with a singular potential. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 51-66. doi: 10.3934/dcdss.2011.4.51

[10]

Zongming Guo, Juncheng Wei. Asymptotic behavior of touch-down solutions and global bifurcations for an elliptic problem with a singular nonlinearity. Communications on Pure & Applied Analysis, 2008, 7 (4) : 765-786. doi: 10.3934/cpaa.2008.7.765

[11]

Tobias Black. Global generalized solutions to a parabolic-elliptic Keller-Segel system with singular sensitivity. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 119-137. doi: 10.3934/dcdss.2020007

[12]

Guoqiang Ren, Bin Liu. Global boundedness of solutions to a chemotaxis-fluid system with singular sensitivity and logistic source. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3843-3883. doi: 10.3934/cpaa.2020170

[13]

Steinar Evje, Kenneth Hvistendahl Karlsen. Global weak solutions for a viscous liquid-gas model with singular pressure law. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1867-1894. doi: 10.3934/cpaa.2009.8.1867

[14]

Julián López-Gómez, Marcela Molina-Meyer, Andrea Tellini. Spiraling bifurcation diagrams in superlinear indefinite problems. Discrete & Continuous Dynamical Systems, 2015, 35 (4) : 1561-1588. doi: 10.3934/dcds.2015.35.1561

[15]

David Gómez-Castro, Juan Luis Vázquez. The fractional Schrödinger equation with singular potential and measure data. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7113-7139. doi: 10.3934/dcds.2019298

[16]

Mouhamed Moustapha Fall, Veronica Felli. Unique continuation properties for relativistic Schrödinger operators with a singular potential. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 5827-5867. doi: 10.3934/dcds.2015.35.5827

[17]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi, Elisabetta Rocca. Optimal control for a phase field system with a possibly singular potential. Mathematical Control & Related Fields, 2016, 6 (1) : 95-112. doi: 10.3934/mcrf.2016.6.95

[18]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi, Elisabetta Rocca. Optimal control for a conserved phase field system with a possibly singular potential. Evolution Equations & Control Theory, 2018, 7 (1) : 95-116. doi: 10.3934/eect.2018006

[19]

Guangyu Xu, Jun Zhou. Global existence and blow-up of solutions to a singular Non-Newton polytropic filtration equation with critical and supercritical initial energy. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1805-1820. doi: 10.3934/cpaa.2018086

[20]

Xiaolong Han, Guozhen Lu. Regularity of solutions to an integral equation associated with Bessel potential. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1111-1119. doi: 10.3934/cpaa.2011.10.1111

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (33)
  • HTML views (127)
  • Cited by (0)

Other articles
by authors

[Back to Top]