In the present paper, we study small data blow-up of the semi-linear wave equation with a scattering dissipation term and a time-dependent mass term from the aspect of wave-like behavior. The Strauss type critical exponent is determined and blow-up results are obtained to both sub-critical and critical cases with corresponding upper bound lifespan estimates. For the sub-critical case, our argument does not rely on the sign condition of dissipation and mass, which gives the extension of the result in [
Citation: |
[1] |
M. D'Abbicco, The threshold of effective damping for semilinear wave equations, Math. Methods in Appl. Sci., 38 (2015), 1032-1045.
doi: 10.1002/mma.3126.![]() ![]() ![]() |
[2] |
M. D'Abbicco, S. Lucente and M. Reissig, Semi-linear wave equations with effective damping, Chin. Ann. Math., 34 (2013), 345-380.
doi: 10.1007/s11401-013-0773-0.![]() ![]() ![]() |
[3] |
M. D'Abbicco, S. Lucente and M. Reissig, A shift in the Strauss exponent for semilinear wave equations with a not effective damping, J. Differential Equations, 259 (2015), 5040-5073.
doi: 10.1016/j.jde.2015.06.018.![]() ![]() ![]() |
[4] |
M. D'Abbicco, G. Girardi and M. Reissig, A scale of critical exponents for semilinear waves with time-dependent damping and mass terms, Nonlinear Anal., 179 (2015), 15-40.
doi: 10.1016/j.na.2018.08.006.![]() ![]() ![]() |
[5] |
L. C. Evans, Partial Differential Equations, 2$^nd$ edition, American Math Society, 2010.
doi: 10.1090/gsm/019.![]() ![]() ![]() |
[6] |
K. Fujiwara, M. Ikeda and Y. Wakasugi, Estimate of lifespan and blow-up rates for the semilinear wave equation with time-dependent damping and subcritical nonlinearities, Funkcial. Ekvac., 62 (2019), 5165-5201.
doi: 10.1619/fesi.62.157.![]() ![]() ![]() |
[7] |
P. Hartman, Ordinary Differential Equations, Classics in Applied Mathematics, 38, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.
doi: 10.1137/1.9780898719222.![]() ![]() ![]() |
[8] |
M. Ikeda and T. Inui, The sharp estimate of the lifespan for the semilinear wave equation with time-dependent damping, Diff. Int. Equs., 32 (2019), 1-36.
![]() ![]() |
[9] |
M. Ikeda and M. Sobajima, Life-span of solutions to semilinear wave equation with time-dependent critical damping for specially localized initial data, Math. Ann., 372 (2018), 1017-1040.
doi: 10.1007/s00208-018-1664-1.![]() ![]() ![]() |
[10] |
M. Ikeda, M. Sobajima and Y. Wakasugi, Sharp lifespan estimates of blowup solutions to semilinear wave equations with time-dependent effective damping, J. Hyperbolic Differential Equations, 16 (2019), 495-517.
doi: 10.1142/S0219891619500176.![]() ![]() ![]() |
[11] |
M. Ikeda and Y. Wakasugi, Global well-posedness for the semilinear wave equation with time dependent damping in the overdamping case, Proc. Amer. Math. Soc., 148 (2020), 157-172.
doi: 10.1090/proc/14297.![]() ![]() ![]() |
[12] |
N.-A. Lai and H. Takamura, Blow-up for semilinear damped wave equations with sub-Strauss exponent in the scattering case, Nonlinear Anal. TMA, 168 (2018), 222-237.
doi: 10.1016/j.na.2017.12.008.![]() ![]() ![]() |
[13] |
N.-A. Lai, H. Takamura and K. Wakasa, Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent, J. Differential Equations, 263 (2017), 5377-5394.
doi: 10.1016/j.jde.2017.06.017.![]() ![]() ![]() |
[14] |
N.-A. Lai, N. M. Schiavone and H. Takamura, Wave-like blow-up for semilinear wave equations with scattering damping and negative mass, in New Tools for Nonlinear PDEs and Application, Trends in Mathematics, Birkhäuser, (2019), 217–240.
doi: 10.1007/978-3-030-10937-0_8.![]() ![]() ![]() |
[15] |
N.-A. Lai, N. M. Schiavone and H. Takamura, Short time blow-up by negative mass term for semilinear wave equations with small data and scattering damping, to appear in Advanced Studies in Pure Mathematics.
![]() |
[16] |
J. Lin, K. Nishihara and J. Zhai, Critical exponent for the semilinear wave equation with time-dependent damping, Discr. Cont. Dyn. Syst.- Series A, 32 (2012), 4307-4320.
doi: 10.3934/dcds.2012.32.4307.![]() ![]() ![]() |
[17] |
M. Liu and C. Wang, Global existence of semilinear damped wave equations in relation with the Strauss conjecture, Discr. Cont. Dyn. Syst.- Series A, 40 (2020), 709-724.
doi: 10.3934/dcds.2020058.![]() ![]() ![]() |
[18] |
A. Palmieri and Z. Tu, Lifespan of semilinear wave equation with scale invariant dissipation and mass and sub-Strauss power nonlinearity, J. Math. Anal. Appl., 470 (2019), 447-469.
doi: 10.1016/j.jmaa.2018.10.015.![]() ![]() ![]() |
[19] |
M. Struwe, Semilinear wave equations, Bulletin of the American Mathematical Society, 26 (1992), 53-85.
doi: 10.1090/S0273-0979-1992-00225-2.![]() ![]() ![]() |
[20] |
C. A. Swanson, Comparison and Oscillation Theory of Linear Differential Equations, Mathematics in Science and Engineering, 48, Academic Press, New York-London, 1968.
![]() ![]() |
[21] |
H. Takamura, Improved Kato's lemma on ordinary differential inequality and its application to semilinear wave equations, Nonlinear Anal. TMA, 125 (2015), 227-240.
doi: 10.1016/j.na.2015.05.024.![]() ![]() ![]() |
[22] |
G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differential Equations, 174 (2001), 464-489.
doi: 10.1006/jdeq.2000.3933.![]() ![]() ![]() |
[23] |
Z. Tu and J. Lin, A note on the blowup of scale invariant damping wave equation with sub-Strauss exponent, preprint, arXiv: 1709.00866.
![]() |
[24] |
Z. Tu and J. Lin, Life-span of semilinear wave equations with scale-invariant damping: Critical Strauss exponent case, Diff. Int. Equs., 32 (2019), 249-264.
![]() ![]() |
[25] |
K. Wakasa and B. Yordanov, Blow-up of solutions to critical semilinear wave equations with variable coefficients, J. Differential Equations, 266 (2019), 5360-5376.
doi: 10.1016/j.jde.2018.10.028.![]() ![]() ![]() |
[26] |
K. Wakasa and B. Yordanov, On the nonexistence of global solutions for critical semilinear wave equations with damping in the scattering case, Nonlinear Anal., 180 (2019), 67-74.
doi: 10.1016/j.na.2018.09.012.![]() ![]() ![]() |
[27] |
Y. Wakasugi, Critical exponent for the semilinear wave equation with scale invariant damping, in Fourier analysis, Trends Math., Birkhäuser/Springer, Cham, (2014), 375–390.
![]() ![]() |
[28] |
Y. Wakasugi, Scaling variables and asymptotic profiles for the semilinear damped wave equation with variable coefficients, J. Math. Anal. Appl., 447 (2017), 452-487.
doi: 10.1016/j.jmaa.2016.10.018.![]() ![]() ![]() |
[29] |
J. Wirth, Solution representations for a wave equation with weak dissipation, Math. Methods Appl. Sci., 27 (2004), 101-124.
doi: 10.1002/mma.446.![]() ![]() ![]() |
[30] |
J. Wirth, Wave equations with time-dependent dissipation. Ⅰ. Non-effective dissipation, J. Differential Equations, 222 (2006), 487-514.
doi: 10.1016/j.jde.2005.07.019.![]() ![]() ![]() |
[31] |
J. Wirth, Wave equations with time-dependent dissipation. Ⅱ. Effective dissipation, J. Differential Equations, 232 (2007), 74-103.
doi: 10.1016/j.jde.2006.06.004.![]() ![]() ![]() |
[32] |
B. Yordanov and Q. S. Zhang, Finite time blow up for critical wave equations in high dimensions, J. Funct. Anal., 231 (2006), 361-374.
doi: 10.1016/j.jfa.2005.03.012.![]() ![]() ![]() |
[33] |
Q. S. Zhang, A blow-up result for a nonlinear wave equation with damping: the critical case, C. R. Math. Acad. Sci. Paris, Sér. I, 333 (2001), 109-114.
doi: 10.1016/S0764-4442(01)01999-1.![]() ![]() ![]() |