\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass

  • * Corresponding author: Ziheng Tu

    * Corresponding author: Ziheng Tu 
Abstract Full Text(HTML) Related Papers Cited by
  • In the present paper, we study small data blow-up of the semi-linear wave equation with a scattering dissipation term and a time-dependent mass term from the aspect of wave-like behavior. The Strauss type critical exponent is determined and blow-up results are obtained to both sub-critical and critical cases with corresponding upper bound lifespan estimates. For the sub-critical case, our argument does not rely on the sign condition of dissipation and mass, which gives the extension of the result in [14]. Moreover, we show the blow-up result for the critical case which is a new result.

    Mathematics Subject Classification: Primary: 35L71; Secondary: 35B44.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] M. D'Abbicco, The threshold of effective damping for semilinear wave equations, Math. Methods in Appl. Sci., 38 (2015), 1032-1045.  doi: 10.1002/mma.3126.
    [2] M. D'AbbiccoS. Lucente and M. Reissig, Semi-linear wave equations with effective damping, Chin. Ann. Math., 34 (2013), 345-380.  doi: 10.1007/s11401-013-0773-0.
    [3] M. D'AbbiccoS. Lucente and M. Reissig, A shift in the Strauss exponent for semilinear wave equations with a not effective damping, J. Differential Equations, 259 (2015), 5040-5073.  doi: 10.1016/j.jde.2015.06.018.
    [4] M. D'AbbiccoG. Girardi and M. Reissig, A scale of critical exponents for semilinear waves with time-dependent damping and mass terms, Nonlinear Anal., 179 (2015), 15-40.  doi: 10.1016/j.na.2018.08.006.
    [5] L. C. Evans, Partial Differential Equations, 2$^nd$ edition, American Math Society, 2010. doi: 10.1090/gsm/019.
    [6] K. FujiwaraM. Ikeda and Y. Wakasugi, Estimate of lifespan and blow-up rates for the semilinear wave equation with time-dependent damping and subcritical nonlinearities, Funkcial. Ekvac., 62 (2019), 5165-5201.  doi: 10.1619/fesi.62.157.
    [7] P. Hartman, Ordinary Differential Equations, Classics in Applied Mathematics, 38, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. doi: 10.1137/1.9780898719222.
    [8] M. Ikeda and T. Inui, The sharp estimate of the lifespan for the semilinear wave equation with time-dependent damping, Diff. Int. Equs., 32 (2019), 1-36. 
    [9] M. Ikeda and M. Sobajima, Life-span of solutions to semilinear wave equation with time-dependent critical damping for specially localized initial data, Math. Ann., 372 (2018), 1017-1040.  doi: 10.1007/s00208-018-1664-1.
    [10] M. IkedaM. Sobajima and Y. Wakasugi, Sharp lifespan estimates of blowup solutions to semilinear wave equations with time-dependent effective damping, J. Hyperbolic Differential Equations, 16 (2019), 495-517.  doi: 10.1142/S0219891619500176.
    [11] M. Ikeda and Y. Wakasugi, Global well-posedness for the semilinear wave equation with time dependent damping in the overdamping case, Proc. Amer. Math. Soc., 148 (2020), 157-172.  doi: 10.1090/proc/14297.
    [12] N.-A. Lai and H. Takamura, Blow-up for semilinear damped wave equations with sub-Strauss exponent in the scattering case, Nonlinear Anal. TMA, 168 (2018), 222-237.  doi: 10.1016/j.na.2017.12.008.
    [13] N.-A. LaiH. Takamura and K. Wakasa, Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent, J. Differential Equations, 263 (2017), 5377-5394.  doi: 10.1016/j.jde.2017.06.017.
    [14] N.-A. Lai, N. M. Schiavone and H. Takamura, Wave-like blow-up for semilinear wave equations with scattering damping and negative mass, in New Tools for Nonlinear PDEs and Application, Trends in Mathematics, Birkhäuser, (2019), 217–240. doi: 10.1007/978-3-030-10937-0_8.
    [15] N.-A. Lai, N. M. Schiavone and H. Takamura, Short time blow-up by negative mass term for semilinear wave equations with small data and scattering damping, to appear in Advanced Studies in Pure Mathematics.
    [16] J. LinK. Nishihara and J. Zhai, Critical exponent for the semilinear wave equation with time-dependent damping, Discr. Cont. Dyn. Syst.- Series A, 32 (2012), 4307-4320.  doi: 10.3934/dcds.2012.32.4307.
    [17] M. Liu and C. Wang, Global existence of semilinear damped wave equations in relation with the Strauss conjecture, Discr. Cont. Dyn. Syst.- Series A, 40 (2020), 709-724.  doi: 10.3934/dcds.2020058.
    [18] A. Palmieri and Z. Tu, Lifespan of semilinear wave equation with scale invariant dissipation and mass and sub-Strauss power nonlinearity, J. Math. Anal. Appl., 470 (2019), 447-469.  doi: 10.1016/j.jmaa.2018.10.015.
    [19] M. Struwe, Semilinear wave equations, Bulletin of the American Mathematical Society, 26 (1992), 53-85.  doi: 10.1090/S0273-0979-1992-00225-2.
    [20] C. A. SwansonComparison and Oscillation Theory of Linear Differential Equations, Mathematics in Science and Engineering, 48, Academic Press, New York-London, 1968. 
    [21] H. Takamura, Improved Kato's lemma on ordinary differential inequality and its application to semilinear wave equations, Nonlinear Anal. TMA, 125 (2015), 227-240.  doi: 10.1016/j.na.2015.05.024.
    [22] G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differential Equations, 174 (2001), 464-489.  doi: 10.1006/jdeq.2000.3933.
    [23] Z. Tu and J. Lin, A note on the blowup of scale invariant damping wave equation with sub-Strauss exponent, preprint, arXiv: 1709.00866.
    [24] Z. Tu and J. Lin, Life-span of semilinear wave equations with scale-invariant damping: Critical Strauss exponent case, Diff. Int. Equs., 32 (2019), 249-264. 
    [25] K. Wakasa and B. Yordanov, Blow-up of solutions to critical semilinear wave equations with variable coefficients, J. Differential Equations, 266 (2019), 5360-5376.  doi: 10.1016/j.jde.2018.10.028.
    [26] K. Wakasa and B. Yordanov, On the nonexistence of global solutions for critical semilinear wave equations with damping in the scattering case, Nonlinear Anal., 180 (2019), 67-74.  doi: 10.1016/j.na.2018.09.012.
    [27] Y. Wakasugi, Critical exponent for the semilinear wave equation with scale invariant damping, in Fourier analysis, Trends Math., Birkhäuser/Springer, Cham, (2014), 375–390.
    [28] Y. Wakasugi, Scaling variables and asymptotic profiles for the semilinear damped wave equation with variable coefficients, J. Math. Anal. Appl., 447 (2017), 452-487.  doi: 10.1016/j.jmaa.2016.10.018.
    [29] J. Wirth, Solution representations for a wave equation with weak dissipation, Math. Methods Appl. Sci., 27 (2004), 101-124.  doi: 10.1002/mma.446.
    [30] J. Wirth, Wave equations with time-dependent dissipation. Ⅰ. Non-effective dissipation, J. Differential Equations, 222 (2006), 487-514.  doi: 10.1016/j.jde.2005.07.019.
    [31] J. Wirth, Wave equations with time-dependent dissipation. Ⅱ. Effective dissipation, J. Differential Equations, 232 (2007), 74-103.  doi: 10.1016/j.jde.2006.06.004.
    [32] B. Yordanov and Q. S. Zhang, Finite time blow up for critical wave equations in high dimensions, J. Funct. Anal., 231 (2006), 361-374.  doi: 10.1016/j.jfa.2005.03.012.
    [33] Q. S. Zhang, A blow-up result for a nonlinear wave equation with damping: the critical case, C. R. Math. Acad. Sci. Paris, Sér. I, 333 (2001), 109-114.  doi: 10.1016/S0764-4442(01)01999-1.
  • 加载中
SHARE

Article Metrics

HTML views(1083) PDF downloads(382) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return