April  2022, 11(2): 515-536. doi: 10.3934/eect.2021011

Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass

1. 

Department of Mathematics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan, Center for Advanced Intelligence Project, RIKEN, Japan

2. 

Department of Mathematics, School of Data Science, Zhejiang University of Finance and Economics, 310018, Hangzhou, P.R.China

3. 

Department of Creative Engineering, National Institute of Technology, Kushiro College, 2-32-1 Otanoshike-Nishi, Kushiro-Shi, Hokkaido 084-0916, Japan

* Corresponding author: Ziheng Tu

Received  March 2020 Revised  December 2020 Published  April 2022 Early access  March 2021

In the present paper, we study small data blow-up of the semi-linear wave equation with a scattering dissipation term and a time-dependent mass term from the aspect of wave-like behavior. The Strauss type critical exponent is determined and blow-up results are obtained to both sub-critical and critical cases with corresponding upper bound lifespan estimates. For the sub-critical case, our argument does not rely on the sign condition of dissipation and mass, which gives the extension of the result in [14]. Moreover, we show the blow-up result for the critical case which is a new result.

Citation: Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations and Control Theory, 2022, 11 (2) : 515-536. doi: 10.3934/eect.2021011
References:
[1]

M. D'Abbicco, The threshold of effective damping for semilinear wave equations, Math. Methods in Appl. Sci., 38 (2015), 1032-1045.  doi: 10.1002/mma.3126.

[2]

M. D'AbbiccoS. Lucente and M. Reissig, Semi-linear wave equations with effective damping, Chin. Ann. Math., 34 (2013), 345-380.  doi: 10.1007/s11401-013-0773-0.

[3]

M. D'AbbiccoS. Lucente and M. Reissig, A shift in the Strauss exponent for semilinear wave equations with a not effective damping, J. Differential Equations, 259 (2015), 5040-5073.  doi: 10.1016/j.jde.2015.06.018.

[4]

M. D'AbbiccoG. Girardi and M. Reissig, A scale of critical exponents for semilinear waves with time-dependent damping and mass terms, Nonlinear Anal., 179 (2015), 15-40.  doi: 10.1016/j.na.2018.08.006.

[5]

L. C. Evans, Partial Differential Equations, 2$^nd$ edition, American Math Society, 2010. doi: 10.1090/gsm/019.

[6]

K. FujiwaraM. Ikeda and Y. Wakasugi, Estimate of lifespan and blow-up rates for the semilinear wave equation with time-dependent damping and subcritical nonlinearities, Funkcial. Ekvac., 62 (2019), 5165-5201.  doi: 10.1619/fesi.62.157.

[7]

P. Hartman, Ordinary Differential Equations, Classics in Applied Mathematics, 38, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. doi: 10.1137/1.9780898719222.

[8]

M. Ikeda and T. Inui, The sharp estimate of the lifespan for the semilinear wave equation with time-dependent damping, Diff. Int. Equs., 32 (2019), 1-36. 

[9]

M. Ikeda and M. Sobajima, Life-span of solutions to semilinear wave equation with time-dependent critical damping for specially localized initial data, Math. Ann., 372 (2018), 1017-1040.  doi: 10.1007/s00208-018-1664-1.

[10]

M. IkedaM. Sobajima and Y. Wakasugi, Sharp lifespan estimates of blowup solutions to semilinear wave equations with time-dependent effective damping, J. Hyperbolic Differential Equations, 16 (2019), 495-517.  doi: 10.1142/S0219891619500176.

[11]

M. Ikeda and Y. Wakasugi, Global well-posedness for the semilinear wave equation with time dependent damping in the overdamping case, Proc. Amer. Math. Soc., 148 (2020), 157-172.  doi: 10.1090/proc/14297.

[12]

N.-A. Lai and H. Takamura, Blow-up for semilinear damped wave equations with sub-Strauss exponent in the scattering case, Nonlinear Anal. TMA, 168 (2018), 222-237.  doi: 10.1016/j.na.2017.12.008.

[13]

N.-A. LaiH. Takamura and K. Wakasa, Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent, J. Differential Equations, 263 (2017), 5377-5394.  doi: 10.1016/j.jde.2017.06.017.

[14]

N.-A. Lai, N. M. Schiavone and H. Takamura, Wave-like blow-up for semilinear wave equations with scattering damping and negative mass, in New Tools for Nonlinear PDEs and Application, Trends in Mathematics, Birkhäuser, (2019), 217–240. doi: 10.1007/978-3-030-10937-0_8.

[15]

N.-A. Lai, N. M. Schiavone and H. Takamura, Short time blow-up by negative mass term for semilinear wave equations with small data and scattering damping, to appear in Advanced Studies in Pure Mathematics.

[16]

J. LinK. Nishihara and J. Zhai, Critical exponent for the semilinear wave equation with time-dependent damping, Discr. Cont. Dyn. Syst.- Series A, 32 (2012), 4307-4320.  doi: 10.3934/dcds.2012.32.4307.

[17]

M. Liu and C. Wang, Global existence of semilinear damped wave equations in relation with the Strauss conjecture, Discr. Cont. Dyn. Syst.- Series A, 40 (2020), 709-724.  doi: 10.3934/dcds.2020058.

[18]

A. Palmieri and Z. Tu, Lifespan of semilinear wave equation with scale invariant dissipation and mass and sub-Strauss power nonlinearity, J. Math. Anal. Appl., 470 (2019), 447-469.  doi: 10.1016/j.jmaa.2018.10.015.

[19]

M. Struwe, Semilinear wave equations, Bulletin of the American Mathematical Society, 26 (1992), 53-85.  doi: 10.1090/S0273-0979-1992-00225-2.

[20] C. A. Swanson, Comparison and Oscillation Theory of Linear Differential Equations, Mathematics in Science and Engineering, 48, Academic Press, New York-London, 1968. 
[21]

H. Takamura, Improved Kato's lemma on ordinary differential inequality and its application to semilinear wave equations, Nonlinear Anal. TMA, 125 (2015), 227-240.  doi: 10.1016/j.na.2015.05.024.

[22]

G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differential Equations, 174 (2001), 464-489.  doi: 10.1006/jdeq.2000.3933.

[23]

Z. Tu and J. Lin, A note on the blowup of scale invariant damping wave equation with sub-Strauss exponent, preprint, arXiv: 1709.00866.

[24]

Z. Tu and J. Lin, Life-span of semilinear wave equations with scale-invariant damping: Critical Strauss exponent case, Diff. Int. Equs., 32 (2019), 249-264. 

[25]

K. Wakasa and B. Yordanov, Blow-up of solutions to critical semilinear wave equations with variable coefficients, J. Differential Equations, 266 (2019), 5360-5376.  doi: 10.1016/j.jde.2018.10.028.

[26]

K. Wakasa and B. Yordanov, On the nonexistence of global solutions for critical semilinear wave equations with damping in the scattering case, Nonlinear Anal., 180 (2019), 67-74.  doi: 10.1016/j.na.2018.09.012.

[27]

Y. Wakasugi, Critical exponent for the semilinear wave equation with scale invariant damping, in Fourier analysis, Trends Math., Birkhäuser/Springer, Cham, (2014), 375–390.

[28]

Y. Wakasugi, Scaling variables and asymptotic profiles for the semilinear damped wave equation with variable coefficients, J. Math. Anal. Appl., 447 (2017), 452-487.  doi: 10.1016/j.jmaa.2016.10.018.

[29]

J. Wirth, Solution representations for a wave equation with weak dissipation, Math. Methods Appl. Sci., 27 (2004), 101-124.  doi: 10.1002/mma.446.

[30]

J. Wirth, Wave equations with time-dependent dissipation. Ⅰ. Non-effective dissipation, J. Differential Equations, 222 (2006), 487-514.  doi: 10.1016/j.jde.2005.07.019.

[31]

J. Wirth, Wave equations with time-dependent dissipation. Ⅱ. Effective dissipation, J. Differential Equations, 232 (2007), 74-103.  doi: 10.1016/j.jde.2006.06.004.

[32]

B. Yordanov and Q. S. Zhang, Finite time blow up for critical wave equations in high dimensions, J. Funct. Anal., 231 (2006), 361-374.  doi: 10.1016/j.jfa.2005.03.012.

[33]

Q. S. Zhang, A blow-up result for a nonlinear wave equation with damping: the critical case, C. R. Math. Acad. Sci. Paris, Sér. I, 333 (2001), 109-114.  doi: 10.1016/S0764-4442(01)01999-1.

show all references

References:
[1]

M. D'Abbicco, The threshold of effective damping for semilinear wave equations, Math. Methods in Appl. Sci., 38 (2015), 1032-1045.  doi: 10.1002/mma.3126.

[2]

M. D'AbbiccoS. Lucente and M. Reissig, Semi-linear wave equations with effective damping, Chin. Ann. Math., 34 (2013), 345-380.  doi: 10.1007/s11401-013-0773-0.

[3]

M. D'AbbiccoS. Lucente and M. Reissig, A shift in the Strauss exponent for semilinear wave equations with a not effective damping, J. Differential Equations, 259 (2015), 5040-5073.  doi: 10.1016/j.jde.2015.06.018.

[4]

M. D'AbbiccoG. Girardi and M. Reissig, A scale of critical exponents for semilinear waves with time-dependent damping and mass terms, Nonlinear Anal., 179 (2015), 15-40.  doi: 10.1016/j.na.2018.08.006.

[5]

L. C. Evans, Partial Differential Equations, 2$^nd$ edition, American Math Society, 2010. doi: 10.1090/gsm/019.

[6]

K. FujiwaraM. Ikeda and Y. Wakasugi, Estimate of lifespan and blow-up rates for the semilinear wave equation with time-dependent damping and subcritical nonlinearities, Funkcial. Ekvac., 62 (2019), 5165-5201.  doi: 10.1619/fesi.62.157.

[7]

P. Hartman, Ordinary Differential Equations, Classics in Applied Mathematics, 38, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. doi: 10.1137/1.9780898719222.

[8]

M. Ikeda and T. Inui, The sharp estimate of the lifespan for the semilinear wave equation with time-dependent damping, Diff. Int. Equs., 32 (2019), 1-36. 

[9]

M. Ikeda and M. Sobajima, Life-span of solutions to semilinear wave equation with time-dependent critical damping for specially localized initial data, Math. Ann., 372 (2018), 1017-1040.  doi: 10.1007/s00208-018-1664-1.

[10]

M. IkedaM. Sobajima and Y. Wakasugi, Sharp lifespan estimates of blowup solutions to semilinear wave equations with time-dependent effective damping, J. Hyperbolic Differential Equations, 16 (2019), 495-517.  doi: 10.1142/S0219891619500176.

[11]

M. Ikeda and Y. Wakasugi, Global well-posedness for the semilinear wave equation with time dependent damping in the overdamping case, Proc. Amer. Math. Soc., 148 (2020), 157-172.  doi: 10.1090/proc/14297.

[12]

N.-A. Lai and H. Takamura, Blow-up for semilinear damped wave equations with sub-Strauss exponent in the scattering case, Nonlinear Anal. TMA, 168 (2018), 222-237.  doi: 10.1016/j.na.2017.12.008.

[13]

N.-A. LaiH. Takamura and K. Wakasa, Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent, J. Differential Equations, 263 (2017), 5377-5394.  doi: 10.1016/j.jde.2017.06.017.

[14]

N.-A. Lai, N. M. Schiavone and H. Takamura, Wave-like blow-up for semilinear wave equations with scattering damping and negative mass, in New Tools for Nonlinear PDEs and Application, Trends in Mathematics, Birkhäuser, (2019), 217–240. doi: 10.1007/978-3-030-10937-0_8.

[15]

N.-A. Lai, N. M. Schiavone and H. Takamura, Short time blow-up by negative mass term for semilinear wave equations with small data and scattering damping, to appear in Advanced Studies in Pure Mathematics.

[16]

J. LinK. Nishihara and J. Zhai, Critical exponent for the semilinear wave equation with time-dependent damping, Discr. Cont. Dyn. Syst.- Series A, 32 (2012), 4307-4320.  doi: 10.3934/dcds.2012.32.4307.

[17]

M. Liu and C. Wang, Global existence of semilinear damped wave equations in relation with the Strauss conjecture, Discr. Cont. Dyn. Syst.- Series A, 40 (2020), 709-724.  doi: 10.3934/dcds.2020058.

[18]

A. Palmieri and Z. Tu, Lifespan of semilinear wave equation with scale invariant dissipation and mass and sub-Strauss power nonlinearity, J. Math. Anal. Appl., 470 (2019), 447-469.  doi: 10.1016/j.jmaa.2018.10.015.

[19]

M. Struwe, Semilinear wave equations, Bulletin of the American Mathematical Society, 26 (1992), 53-85.  doi: 10.1090/S0273-0979-1992-00225-2.

[20] C. A. Swanson, Comparison and Oscillation Theory of Linear Differential Equations, Mathematics in Science and Engineering, 48, Academic Press, New York-London, 1968. 
[21]

H. Takamura, Improved Kato's lemma on ordinary differential inequality and its application to semilinear wave equations, Nonlinear Anal. TMA, 125 (2015), 227-240.  doi: 10.1016/j.na.2015.05.024.

[22]

G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differential Equations, 174 (2001), 464-489.  doi: 10.1006/jdeq.2000.3933.

[23]

Z. Tu and J. Lin, A note on the blowup of scale invariant damping wave equation with sub-Strauss exponent, preprint, arXiv: 1709.00866.

[24]

Z. Tu and J. Lin, Life-span of semilinear wave equations with scale-invariant damping: Critical Strauss exponent case, Diff. Int. Equs., 32 (2019), 249-264. 

[25]

K. Wakasa and B. Yordanov, Blow-up of solutions to critical semilinear wave equations with variable coefficients, J. Differential Equations, 266 (2019), 5360-5376.  doi: 10.1016/j.jde.2018.10.028.

[26]

K. Wakasa and B. Yordanov, On the nonexistence of global solutions for critical semilinear wave equations with damping in the scattering case, Nonlinear Anal., 180 (2019), 67-74.  doi: 10.1016/j.na.2018.09.012.

[27]

Y. Wakasugi, Critical exponent for the semilinear wave equation with scale invariant damping, in Fourier analysis, Trends Math., Birkhäuser/Springer, Cham, (2014), 375–390.

[28]

Y. Wakasugi, Scaling variables and asymptotic profiles for the semilinear damped wave equation with variable coefficients, J. Math. Anal. Appl., 447 (2017), 452-487.  doi: 10.1016/j.jmaa.2016.10.018.

[29]

J. Wirth, Solution representations for a wave equation with weak dissipation, Math. Methods Appl. Sci., 27 (2004), 101-124.  doi: 10.1002/mma.446.

[30]

J. Wirth, Wave equations with time-dependent dissipation. Ⅰ. Non-effective dissipation, J. Differential Equations, 222 (2006), 487-514.  doi: 10.1016/j.jde.2005.07.019.

[31]

J. Wirth, Wave equations with time-dependent dissipation. Ⅱ. Effective dissipation, J. Differential Equations, 232 (2007), 74-103.  doi: 10.1016/j.jde.2006.06.004.

[32]

B. Yordanov and Q. S. Zhang, Finite time blow up for critical wave equations in high dimensions, J. Funct. Anal., 231 (2006), 361-374.  doi: 10.1016/j.jfa.2005.03.012.

[33]

Q. S. Zhang, A blow-up result for a nonlinear wave equation with damping: the critical case, C. R. Math. Acad. Sci. Paris, Sér. I, 333 (2001), 109-114.  doi: 10.1016/S0764-4442(01)01999-1.

[1]

Vo Van Au, Jagdev Singh, Anh Tuan Nguyen. Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, 2021, 29 (6) : 3581-3607. doi: 10.3934/era.2021052

[2]

Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661

[3]

Tayeb Hadj Kaddour, Michael Reissig. Blow-up results for effectively damped wave models with nonlinear memory. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2687-2707. doi: 10.3934/cpaa.2020239

[4]

Út V. Lê. Contraction-Galerkin method for a semi-linear wave equation. Communications on Pure and Applied Analysis, 2010, 9 (1) : 141-160. doi: 10.3934/cpaa.2010.9.141

[5]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[6]

Donghao Li, Hongwei Zhang, Shuo Liu, Qingiyng Hu. Blow-up of solutions to a viscoelastic wave equation with nonlocal damping. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022009

[7]

Jorge A. Esquivel-Avila. Blow-up in damped abstract nonlinear equations. Electronic Research Archive, 2020, 28 (1) : 347-367. doi: 10.3934/era.2020020

[8]

Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6837-6854. doi: 10.3934/dcdsb.2019169

[9]

Yongqin Liu. The point-wise estimates of solutions for semi-linear dissipative wave equation. Communications on Pure and Applied Analysis, 2013, 12 (1) : 237-252. doi: 10.3934/cpaa.2013.12.237

[10]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

[11]

Maurizio Grasselli, Vittorino Pata. On the damped semilinear wave equation with critical exponent. Conference Publications, 2003, 2003 (Special) : 351-358. doi: 10.3934/proc.2003.2003.351

[12]

Van Duong Dinh. Blow-up criteria for linearly damped nonlinear Schrödinger equations. Evolution Equations and Control Theory, 2021, 10 (3) : 599-617. doi: 10.3934/eect.2020082

[13]

Jean-Daniel Djida, Arran Fernandez, Iván Area. Well-posedness results for fractional semi-linear wave equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 569-597. doi: 10.3934/dcdsb.2019255

[14]

Yanbing Yang, Runzhang Xu. Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1351-1358. doi: 10.3934/cpaa.2019065

[15]

Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1

[16]

Yuta Wakasugi. Blow-up of solutions to the one-dimensional semilinear wave equation with damping depending on time and space variables. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3831-3846. doi: 10.3934/dcds.2014.34.3831

[17]

Min Li, Zhaoyang Yin. Blow-up phenomena and travelling wave solutions to the periodic integrable dispersive Hunter-Saxton equation. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6471-6485. doi: 10.3934/dcds.2017280

[18]

Asma Azaiez. Refined regularity for the blow-up set at non characteristic points for the vector-valued semilinear wave equation. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2397-2408. doi: 10.3934/cpaa.2019108

[19]

Xiaoqiang Dai, Chao Yang, Shaobin Huang, Tao Yu, Yuanran Zhu. Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems. Electronic Research Archive, 2020, 28 (1) : 91-102. doi: 10.3934/era.2020006

[20]

Mohammad Kafini. On the blow-up of the Cauchy problem of higher-order nonlinear viscoelastic wave equation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1221-1232. doi: 10.3934/dcdss.2021093

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (356)
  • HTML views (418)
  • Cited by (0)

Other articles
by authors

[Back to Top]