• Previous Article
    Exponential stabilization of a linear Korteweg-de Vries equation with input saturation
  • EECT Home
  • This Issue
  • Next Article
    New criteria for exponential stability in mean square of stochastic functional differential equations with infinite delay
doi: 10.3934/eect.2021020
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Optimal control problems governed by two dimensional convective Brinkman-Forchheimer equations

Department of Mathematics, Indian Institute of Technology Roorkee-IIT Roorkee, Haridwar Highway, Roorkee, Uttarakhand 247667, INDIA

*Corresponding author: Manil T. Mohan

Received  May 2020 Revised  March 2021 Early access April 2021

The convective Brinkman-Forchheimer (CBF) equations describe the motion of incompressible viscous fluids through a rigid, homogeneous, isotropic, porous medium and is given by
$ \partial_t{\boldsymbol{u}}-\mu \Delta{\boldsymbol{u}}+({\boldsymbol{u}}\cdot\nabla){\boldsymbol{u}}+\alpha{\boldsymbol{u}}+\beta|{\boldsymbol{u}}|^{r-1}{\boldsymbol{u}}+\nabla p = {\boldsymbol{f}},\ \nabla\cdot{\boldsymbol{u}} = 0. $
In this work, we consider some distributed optimal control problems like total energy minimization, minimization of enstrophy, etc governed by the two dimensional CBF equations with the absorption exponent
$ r = 1,2 $
and
$ 3 $
. We show the existence of an optimal solution and the first order necessary conditions of optimality for such optimal control problems in terms of the Euler-Lagrange system. Furthermore, for the case
$ r = 3 $
, we show the second order necessary and sufficient conditions of optimality. We also investigate an another control problem which is similar to that of the data assimilation problems in meteorology of obtaining unknown initial data, when the system under consideration is 2D CBF equations, using optimal control techniques.
Citation: Manil T. Mohan. Optimal control problems governed by two dimensional convective Brinkman-Forchheimer equations. Evolution Equations & Control Theory, doi: 10.3934/eect.2021020
References:
[1]

S. N. Antontsev and H. B. de Oliveira, The Navier-Stokes problem modified by an absorption term, Applicable Analysis, 89 (2010), 1805-1825.  doi: 10.1080/00036811.2010.495341.  Google Scholar

[2]

F. Abergel and R. Temam, On some control problems in fluid mechanics, Theoretical and Computational Fluid Dynamics, 1 (1990), 303-325.  doi: 10.1007/BF00271794.  Google Scholar

[3]

V. Barbu, Optimal Control of Variational Inequalities, Pitman Res. Notes Math. Ser. 100, Pitman, Boston, 1984.  Google Scholar

[4]

V. Barbu, Optimal control of Navier-Stokes equations with periodic inputs, Nonlinear Analysis: Theory, Methods & Applications, 31 (1998), 15-31.  doi: 10.1016/S0362-546X(96)00306-9.  Google Scholar

[5]

T. BiswasS. Dharmatti and M. T. Mohan, Pontryagin's maximum principle for optimal control of the nonlocal Cahn-Hilliard-Navier-Stokes systems in two dimensions, Analysis (Berlin), 40 (2020), 127-150.  doi: 10.1515/anly-2019-0049.  Google Scholar

[6]

T. Biswas, S. Dharmatti and M. T. Mohan, Maximum principle and data assimilation problem for the optimal control problems governed by 2D nonlocal Cahn-Hilliard-Navier-Stokes equations, Journal of Mathematical Fluid Mechanics, 22 (2020), Article No. 34, 1-42. doi: 10.1007/s00021-020-00493-8.  Google Scholar

[7]

T. BiswasS. Dharmatti and M. T. Mohan, Second order optimality conditions for optimal control problems governed by 2D nonlocal Cahn-Hilliard-Navier-Stokes equations, Nonlinear Studies, 28 (2021), 29-43.   Google Scholar

[8]

E. Casas and F. Tröltzsch, Second-order necessary and sufficient optimality conditions for optimization problems and applications to control theory, SIAM J. Optim., 13 (2002), 406-431.  doi: 10.1137/S1052623400367698.  Google Scholar

[9]

P. G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, SIAM Philadelphia, 2013.  Google Scholar

[10]

P. Cherier and A. Milani, Linear and Quasi-linear Evolution Equations in Hilbert Spaces, American Mathematical Society Providence, Rhode Island, 2012. doi: 10.1090/gsm/135.  Google Scholar

[11] R. F. Curtain and A. J. Pritchard, Functional Analysis in Modern Applied Mathematics, Mathematics in Science and Engineering, Vol. 132. Academic Press, London-New York, 1977.   Google Scholar
[12]

S. DoboszczakM. T. Mohan and S. S. Sritharan, Existence of optimal controls for compressible viscous flow, Journal of Mathematical Fluid Mechanics, 20 (2018), 199-211.  doi: 10.1007/s00021-017-0318-5.  Google Scholar

[13]

L. C. Evans, Partial Differential Equations, Grad. Stud. Math., vol. 19, Amer. Math. Soc., Providence, RI, 1998.  Google Scholar

[14] I. Ekeland and T. Turnbull, Infinite-dimensional Optimization and Convexity, The University of Chicago press, Chicago and London, 1983.   Google Scholar
[15]

H. O. Fattorini and S. S. Sritharan, Necessary and sufficient conditions for optimal controls in viscous flow problems, Proc. Roy. Soc. Edinburoh A, 124 (1994), 211-251.  doi: 10.1017/S0308210500028444.  Google Scholar

[16]

C. L. Fefferman, K. W. Hajduk and J. C. Robinson, Simultaneous approximation in Lebesgue and Sobolev norms via eigenspaces, arXiv: 1904.03337. Google Scholar

[17]

B. P. W. Fernando and S. S. Sritharan, Nonlinear filtering of stochastic Navier-Stokes equation with Lévy noise, Stochastic Analysis and Applications, 31 (2013), 381-426.  doi: 10.1080/07362994.2013.759482.  Google Scholar

[18]

D. Fujiwara and H. Morimoto, An $L^r$-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 24 (1977), 685-700.   Google Scholar

[19]

A. V. Fursikov, Optimal Control of Distributed Systems: Theory and Applications, , American Mathematical Society, Rhode Island, 2000. doi: 10.1090/mmono/187.  Google Scholar

[20]

G. P. Galdi, An introduction to the Navier-Stokes initial-boundary value problem, Fundamental Directions in Mathematical Fluid Mechanics, Adv. Math. Fluid Mech. Birkhaüser, Basel, 2000, 1-70.  Google Scholar

[21]

M. D. Gunzburger, Perspectives in Flow Control and Optimization, SIAM's Advances in Design and Control series, Philadelphia, 2003.  Google Scholar

[22]

K. W. Hajduk and J. C. Robinson, Energy equality for the 3D critical convective Brinkman-Forchheimer equations, Journal of Differential Equations, 263 (2017), 7141-7161.  doi: 10.1016/j.jde.2017.08.001.  Google Scholar

[23]

V. K. Kalantarov and S. Zelik, Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities, Commun. Pure Appl. Anal., 11 (2012), 2037-2054.  doi: 10.3934/cpaa.2012.11.2037.  Google Scholar

[24]

H. Kozono and T. Yanagisawa, $L^r$-variational inequality for vector fields and the Helmholtz-Weyl decomposition in bounded domains, Indiana Univ. Math. J., 58 (2009), 1853-1920.  doi: 10.1512/iumj.2009.58.3605.  Google Scholar

[25]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York, 1969.  Google Scholar

[26]

J. -L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, 1971.  Google Scholar

[27]

J. -L. Lions and E. Magenes, Nonhomogeneous Boundary-Value Problems and Applications, Springer Verlag, Berlin, Germany, 1972.  Google Scholar

[28]

M. T. Mohan, Deterministic and stochastic equations of motion arising in Oldroyd fluids of order one: existence, uniqueness, exponential stability and invariant measures, Stochastic Analysis and Applications, 38 (2020), 1-61.  doi: 10.1080/07362994.2019.1646138.  Google Scholar

[29]

M. T. Mohan, First order necessary conditions of optimality for the two dimensional tidal dynamics system, Mathematical Control and Related Fields, 2020. doi: 10.3934/mcrf. 2020045.  Google Scholar

[30]

M. T. Mohan, On the convective Brinkman-Forchheimer equations, Submitted. Google Scholar

[31]

M. T. Mohan, The time optimal control of two dimensional convective Brinkman-Forchheimer equations, Applied Mathematics & Optimization, 2021. doi: 10.1007/s00245-021-09748-w.  Google Scholar

[32]

J. P. Raymond, Optimal control of partial differential equations. Université Paul Sabatier, Lecture Notes, 2013. Google Scholar

[33] J. C. RobinsonJ. L. Rodrigo and W. Sadowski, The Three-dimensional Navier-Stokes Equations, Classical Theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, UK, 2016.  doi: 10.1017/CBO9781139095143.  Google Scholar
[34]

A. K. SharmaM. K. Khandelwal and P. Bera, Finite amplitude analysis of non-isothermal parallel flow in avertical channel filled with high permeable porous medium, Journal of Fluid Mechanics, 857 (2018), 469-507.  doi: 10.1017/jfm.2018.745.  Google Scholar

[35]

J. Simon, Compact sets in the space $\mathrm{L}^p(0, T;\mathrm{B})$, Annali di Matematica Pura ed Applicata, 146 (1986), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[36]

S. S. Sritharan, Optimal Control of Viscous Flow, SIAM Frontiers in Applied Mathematics, Philadelphia. Society for Industrial and Applied Mathematics, 1998. doi: 10.1137/1.9781611971415.  Google Scholar

[37]

T. Tachim Medjo, Second-order optimality conditions for optimal control of the primitive equations of the ocean with periodic inputs, Applied Mathematics and Optimization, 63 (2011), 75-106.  doi: 10.1007/s00245-010-9112-y.  Google Scholar

[38]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam, 1984.  Google Scholar

[39]

F. Tröltzsch and D. Wachsmuth, Second-order sufficient optimality conditions for the optimal control of Navier-Stokes equations, ESAIM: Control, Optimisation and Calculus of Variations, 12 (2006), 93-119.  doi: 10.1051/cocv:2005029.  Google Scholar

[40]

L. Wang and P. He, Second order optimality conditions for optimal control problems governed by 3-dimensional Navier-Stokes equations, Acta Mathematica Scientia, 26 (2006), 729-734.  doi: 10.1016/S0252-9602(06)60099-4.  Google Scholar

[41]

G. Wang, Optimal controls of 3 dimensional Navier-Stokes equations with state constraints, SIAM Journal on Control and Optimization, 41 (2002), 583-606.  doi: 10.1137/S0363012901385769.  Google Scholar

[42]

G. Wang and L. Wang, Maximum principle of state-constrained optimal control governed by fluid dynamic systems, Nonlinear Analysis: Theory, Methods & Applications, 52 (2003), 1911-1931.  doi: 10.1016/S0362-546X(02)00282-1.  Google Scholar

show all references

References:
[1]

S. N. Antontsev and H. B. de Oliveira, The Navier-Stokes problem modified by an absorption term, Applicable Analysis, 89 (2010), 1805-1825.  doi: 10.1080/00036811.2010.495341.  Google Scholar

[2]

F. Abergel and R. Temam, On some control problems in fluid mechanics, Theoretical and Computational Fluid Dynamics, 1 (1990), 303-325.  doi: 10.1007/BF00271794.  Google Scholar

[3]

V. Barbu, Optimal Control of Variational Inequalities, Pitman Res. Notes Math. Ser. 100, Pitman, Boston, 1984.  Google Scholar

[4]

V. Barbu, Optimal control of Navier-Stokes equations with periodic inputs, Nonlinear Analysis: Theory, Methods & Applications, 31 (1998), 15-31.  doi: 10.1016/S0362-546X(96)00306-9.  Google Scholar

[5]

T. BiswasS. Dharmatti and M. T. Mohan, Pontryagin's maximum principle for optimal control of the nonlocal Cahn-Hilliard-Navier-Stokes systems in two dimensions, Analysis (Berlin), 40 (2020), 127-150.  doi: 10.1515/anly-2019-0049.  Google Scholar

[6]

T. Biswas, S. Dharmatti and M. T. Mohan, Maximum principle and data assimilation problem for the optimal control problems governed by 2D nonlocal Cahn-Hilliard-Navier-Stokes equations, Journal of Mathematical Fluid Mechanics, 22 (2020), Article No. 34, 1-42. doi: 10.1007/s00021-020-00493-8.  Google Scholar

[7]

T. BiswasS. Dharmatti and M. T. Mohan, Second order optimality conditions for optimal control problems governed by 2D nonlocal Cahn-Hilliard-Navier-Stokes equations, Nonlinear Studies, 28 (2021), 29-43.   Google Scholar

[8]

E. Casas and F. Tröltzsch, Second-order necessary and sufficient optimality conditions for optimization problems and applications to control theory, SIAM J. Optim., 13 (2002), 406-431.  doi: 10.1137/S1052623400367698.  Google Scholar

[9]

P. G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, SIAM Philadelphia, 2013.  Google Scholar

[10]

P. Cherier and A. Milani, Linear and Quasi-linear Evolution Equations in Hilbert Spaces, American Mathematical Society Providence, Rhode Island, 2012. doi: 10.1090/gsm/135.  Google Scholar

[11] R. F. Curtain and A. J. Pritchard, Functional Analysis in Modern Applied Mathematics, Mathematics in Science and Engineering, Vol. 132. Academic Press, London-New York, 1977.   Google Scholar
[12]

S. DoboszczakM. T. Mohan and S. S. Sritharan, Existence of optimal controls for compressible viscous flow, Journal of Mathematical Fluid Mechanics, 20 (2018), 199-211.  doi: 10.1007/s00021-017-0318-5.  Google Scholar

[13]

L. C. Evans, Partial Differential Equations, Grad. Stud. Math., vol. 19, Amer. Math. Soc., Providence, RI, 1998.  Google Scholar

[14] I. Ekeland and T. Turnbull, Infinite-dimensional Optimization and Convexity, The University of Chicago press, Chicago and London, 1983.   Google Scholar
[15]

H. O. Fattorini and S. S. Sritharan, Necessary and sufficient conditions for optimal controls in viscous flow problems, Proc. Roy. Soc. Edinburoh A, 124 (1994), 211-251.  doi: 10.1017/S0308210500028444.  Google Scholar

[16]

C. L. Fefferman, K. W. Hajduk and J. C. Robinson, Simultaneous approximation in Lebesgue and Sobolev norms via eigenspaces, arXiv: 1904.03337. Google Scholar

[17]

B. P. W. Fernando and S. S. Sritharan, Nonlinear filtering of stochastic Navier-Stokes equation with Lévy noise, Stochastic Analysis and Applications, 31 (2013), 381-426.  doi: 10.1080/07362994.2013.759482.  Google Scholar

[18]

D. Fujiwara and H. Morimoto, An $L^r$-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 24 (1977), 685-700.   Google Scholar

[19]

A. V. Fursikov, Optimal Control of Distributed Systems: Theory and Applications, , American Mathematical Society, Rhode Island, 2000. doi: 10.1090/mmono/187.  Google Scholar

[20]

G. P. Galdi, An introduction to the Navier-Stokes initial-boundary value problem, Fundamental Directions in Mathematical Fluid Mechanics, Adv. Math. Fluid Mech. Birkhaüser, Basel, 2000, 1-70.  Google Scholar

[21]

M. D. Gunzburger, Perspectives in Flow Control and Optimization, SIAM's Advances in Design and Control series, Philadelphia, 2003.  Google Scholar

[22]

K. W. Hajduk and J. C. Robinson, Energy equality for the 3D critical convective Brinkman-Forchheimer equations, Journal of Differential Equations, 263 (2017), 7141-7161.  doi: 10.1016/j.jde.2017.08.001.  Google Scholar

[23]

V. K. Kalantarov and S. Zelik, Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities, Commun. Pure Appl. Anal., 11 (2012), 2037-2054.  doi: 10.3934/cpaa.2012.11.2037.  Google Scholar

[24]

H. Kozono and T. Yanagisawa, $L^r$-variational inequality for vector fields and the Helmholtz-Weyl decomposition in bounded domains, Indiana Univ. Math. J., 58 (2009), 1853-1920.  doi: 10.1512/iumj.2009.58.3605.  Google Scholar

[25]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York, 1969.  Google Scholar

[26]

J. -L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, 1971.  Google Scholar

[27]

J. -L. Lions and E. Magenes, Nonhomogeneous Boundary-Value Problems and Applications, Springer Verlag, Berlin, Germany, 1972.  Google Scholar

[28]

M. T. Mohan, Deterministic and stochastic equations of motion arising in Oldroyd fluids of order one: existence, uniqueness, exponential stability and invariant measures, Stochastic Analysis and Applications, 38 (2020), 1-61.  doi: 10.1080/07362994.2019.1646138.  Google Scholar

[29]

M. T. Mohan, First order necessary conditions of optimality for the two dimensional tidal dynamics system, Mathematical Control and Related Fields, 2020. doi: 10.3934/mcrf. 2020045.  Google Scholar

[30]

M. T. Mohan, On the convective Brinkman-Forchheimer equations, Submitted. Google Scholar

[31]

M. T. Mohan, The time optimal control of two dimensional convective Brinkman-Forchheimer equations, Applied Mathematics & Optimization, 2021. doi: 10.1007/s00245-021-09748-w.  Google Scholar

[32]

J. P. Raymond, Optimal control of partial differential equations. Université Paul Sabatier, Lecture Notes, 2013. Google Scholar

[33] J. C. RobinsonJ. L. Rodrigo and W. Sadowski, The Three-dimensional Navier-Stokes Equations, Classical Theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, UK, 2016.  doi: 10.1017/CBO9781139095143.  Google Scholar
[34]

A. K. SharmaM. K. Khandelwal and P. Bera, Finite amplitude analysis of non-isothermal parallel flow in avertical channel filled with high permeable porous medium, Journal of Fluid Mechanics, 857 (2018), 469-507.  doi: 10.1017/jfm.2018.745.  Google Scholar

[35]

J. Simon, Compact sets in the space $\mathrm{L}^p(0, T;\mathrm{B})$, Annali di Matematica Pura ed Applicata, 146 (1986), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[36]

S. S. Sritharan, Optimal Control of Viscous Flow, SIAM Frontiers in Applied Mathematics, Philadelphia. Society for Industrial and Applied Mathematics, 1998. doi: 10.1137/1.9781611971415.  Google Scholar

[37]

T. Tachim Medjo, Second-order optimality conditions for optimal control of the primitive equations of the ocean with periodic inputs, Applied Mathematics and Optimization, 63 (2011), 75-106.  doi: 10.1007/s00245-010-9112-y.  Google Scholar

[38]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam, 1984.  Google Scholar

[39]

F. Tröltzsch and D. Wachsmuth, Second-order sufficient optimality conditions for the optimal control of Navier-Stokes equations, ESAIM: Control, Optimisation and Calculus of Variations, 12 (2006), 93-119.  doi: 10.1051/cocv:2005029.  Google Scholar

[40]

L. Wang and P. He, Second order optimality conditions for optimal control problems governed by 3-dimensional Navier-Stokes equations, Acta Mathematica Scientia, 26 (2006), 729-734.  doi: 10.1016/S0252-9602(06)60099-4.  Google Scholar

[41]

G. Wang, Optimal controls of 3 dimensional Navier-Stokes equations with state constraints, SIAM Journal on Control and Optimization, 41 (2002), 583-606.  doi: 10.1137/S0363012901385769.  Google Scholar

[42]

G. Wang and L. Wang, Maximum principle of state-constrained optimal control governed by fluid dynamic systems, Nonlinear Analysis: Theory, Methods & Applications, 52 (2003), 1911-1931.  doi: 10.1016/S0362-546X(02)00282-1.  Google Scholar

[1]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[2]

Varga K. Kalantarov, Sergey Zelik. Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2037-2054. doi: 10.3934/cpaa.2012.11.2037

[3]

Yuncheng You, Caidi Zhao, Shengfan Zhou. The existence of uniform attractors for 3D Brinkman-Forchheimer equations. Discrete & Continuous Dynamical Systems, 2012, 32 (10) : 3787-3800. doi: 10.3934/dcds.2012.32.3787

[4]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[5]

Qiangheng Zhang, Yangrong Li. Regular attractors of asymptotically autonomous stochastic 3D Brinkman-Forchheimer equations with delays. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021117

[6]

Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004

[7]

Hongwei Lou, Jiongmin Yong. Second-order necessary conditions for optimal control of semilinear elliptic equations with leading term containing controls. Mathematical Control & Related Fields, 2018, 8 (1) : 57-88. doi: 10.3934/mcrf.2018003

[8]

Wenjing Liu, Rong Yang, Xin-Guang Yang. Dynamics of a 3D Brinkman-Forchheimer equation with infinite delay. Communications on Pure & Applied Analysis, 2021, 20 (5) : 1907-1930. doi: 10.3934/cpaa.2021052

[9]

Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control & Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021

[10]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[11]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[12]

Francis Clarke. A general theorem on necessary conditions in optimal control. Discrete & Continuous Dynamical Systems, 2011, 29 (2) : 485-503. doi: 10.3934/dcds.2011.29.485

[13]

Hongwei Lou. Second-order necessary/sufficient conditions for optimal control problems in the absence of linear structure. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1445-1464. doi: 10.3934/dcdsb.2010.14.1445

[14]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[15]

Andrei V. Dmitruk, Nikolai P. Osmolovskii. Necessary conditions for a weak minimum in optimal control problems with integral equations on a variable time interval. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 4323-4343. doi: 10.3934/dcds.2015.35.4323

[16]

Andrei V. Dmitruk, Nikolai P. Osmolovski. Necessary conditions for a weak minimum in a general optimal control problem with integral equations on a variable time interval. Mathematical Control & Related Fields, 2017, 7 (4) : 507-535. doi: 10.3934/mcrf.2017019

[17]

Shanjian Tang. A second-order maximum principle for singular optimal stochastic controls. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1581-1599. doi: 10.3934/dcdsb.2010.14.1581

[18]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[19]

Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo. On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks & Heterogeneous Media, 2018, 13 (4) : 585-607. doi: 10.3934/nhm.2018027

[20]

Sofia O. Lopes, Fernando A. C. C. Fontes, Maria do Rosário de Pinho. On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems. Discrete & Continuous Dynamical Systems, 2011, 29 (2) : 559-575. doi: 10.3934/dcds.2011.29.559

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (48)
  • HTML views (183)
  • Cited by (0)

Other articles
by authors

[Back to Top]