• Previous Article
    Local null controllability for a parabolic equation with local and nonlocal nonlinearities in moving domains
  • EECT Home
  • This Issue
  • Next Article
    On the stabilization for the high-order Kadomtsev-Petviashvili and the Zakharov-Kuznetsov equations with localized damping
June  2022, 11(3): 729-748. doi: 10.3934/eect.2021023

Exponential stability for a multi-particle system with piecewise interaction function and stochastic disturbance

College of Liberal Arts and Science, National University of Defense Technology, Changsha, 410073, China

* Corresponding author: Yicheng Liu

Received  September 2020 Revised  March 2021 Published  June 2022 Early access  April 2021

Fund Project: This work was partially supported by the National Natural Science Foundation of China (11671011) and Hunan Provincial Innovation Foundation for Postgraduate (CN) (CX20200011)

In this paper, a generalized Motsch-Tadmor model with piecewise interaction function is investigated, which can be viewed as a generalization of the model proposed in [9]. Our analysis bases on the connectedness of the underlying graph of the system. Some sufficient conditions are presented to guarantee the system to achieve flocking. Besides, we add a stochastic disturbance to the system and consider the flocking in the sense of expectation. As results, some criterions to the flocking solution with exponential convergent rate are established by the standard differential equations analysis.

Citation: Yipeng Chen, Yicheng Liu, Xiao Wang. Exponential stability for a multi-particle system with piecewise interaction function and stochastic disturbance. Evolution Equations and Control Theory, 2022, 11 (3) : 729-748. doi: 10.3934/eect.2021023
References:
[1]

S.-M. Ahn and S.-Y. Ha, Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, Journal of Mathematical Physics, 51 (2010), 103301, 17pp. doi: 10.1063/1.3496895.

[2]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Transactions on Automatic Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.

[3]

F. Cucker and S. Smale, On the mathematics of emergence, Japanese Journal of Mathematics, 2 (2007), 197-227.  doi: 10.1007/s11537-007-0647-x.

[4]

F. Cucker and E. Mordecki, Flocking in noisy environments, Journal de Mathématiques Pures et Appliquées, 89 (2008), 278-296.  doi: 10.1016/j.matpur.2007.12.002.

[5]

J.-G. DongS.-Y. HaJ. Jung and D. Kim, On the stochastic flocking of the Cucker-Smale flock with randomly switching topologies, SIAM Journal on Control and Optimization, 58 (2020), 2332-2353.  doi: 10.1137/19M1279150.

[6]

R. ErbanJ. Haskovec and Y. Sun, A Cucker-Smale model with noise and delay, SIAM Journal on Applied Mathematics, 76 (2016), 1535-1557.  doi: 10.1137/15M1030467.

[7]

S.-Y. Ha and J. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean field limit, Communications in Mathematical Sciences, 7 (2009), 297-325.  doi: 10.4310/CMS.2009.v7.n2.a2.

[8]

S.-Y. HaK. Lee and D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Communications in Mathematical Sciences, 7 (2009), 453-469.  doi: 10.4310/CMS.2009.v7.n2.a9.

[9]

Y. Jin, Flocking of the Motsch-Tadmor model with a cut-off interaction function, Journal of Statistical Physics, 171 (2018), 345-360.  doi: 10.1007/s10955-018-2006-0.

[10]

Z. Li and S.-Y. Ha, On the Cucker-Smale flocking with alternating leaders, Quarterly of Applied Mathematics, 73 (2015), 693-709.  doi: 10.1090/qam/1401.

[11]

Y. Liu and J. Wu, Flocking and asymptotic velocity of the Cucker-Smale model with processing delay, Journal Mathematical Analysis and Applications, 415 (2014), 53-61.  doi: 10.1016/j.jmaa.2014.01.036.

[12]

Y. Liu and J. Wu, Local phase synchronization and clustering for the delayed phase-coupled oscillators with plastic coupling, Journal Mathematical Analysis and Applications, 444 (2016), 947-956.  doi: 10.1016/j.jmaa.2016.06.049.

[13]

Y. Liu and J. Wu, Opinion consensus with delay when the zero eigenvalue of the connection matrix is semi-simple, Journal Mathematical Analysis and Applications, 29 (2017), 1539-1551.  doi: 10.1007/s10884-016-9548-0.

[14]

X. Mao, Stochastic Differential Equations and Applications, Second edition. Horwood Publishing Limited, Chichester, 2008. doi: 10.1533/9780857099402.

[15]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, Journal of Statistical Physics, 144 (2011), 923-947.  doi: 10.1007/s10955-011-0285-9.

[16]

L. Pedeches, Asymptotic properties of various stochastic Cucker-Smale dynamics, Discrete and Continuous Dynamical Systems, 38 (2018), 2731-2762.  doi: 10.3934/dcds.2018115.

[17]

J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM Journal on Applied Mathematics, 68 (2007), 694-719.  doi: 10.1137/060673254.

[18]

T. V. TonN. T. Lihn and A. yagi, Flocking and non-flocking behaviour in a stochastic Cucker-Smale system, Analysis and Application, 12 (2014), 63-73.  doi: 10.1142/S0219530513500255.

[19]

X. WangL. Wang and J. Wu, Impacts of time delay on flocking dynamics of a two-agent flock model, Communications in Nonlinear Science and Numerical Simulation, 70 (2019), 80-88.  doi: 10.1016/j.cnsns.2018.10.017.

show all references

References:
[1]

S.-M. Ahn and S.-Y. Ha, Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, Journal of Mathematical Physics, 51 (2010), 103301, 17pp. doi: 10.1063/1.3496895.

[2]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Transactions on Automatic Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.

[3]

F. Cucker and S. Smale, On the mathematics of emergence, Japanese Journal of Mathematics, 2 (2007), 197-227.  doi: 10.1007/s11537-007-0647-x.

[4]

F. Cucker and E. Mordecki, Flocking in noisy environments, Journal de Mathématiques Pures et Appliquées, 89 (2008), 278-296.  doi: 10.1016/j.matpur.2007.12.002.

[5]

J.-G. DongS.-Y. HaJ. Jung and D. Kim, On the stochastic flocking of the Cucker-Smale flock with randomly switching topologies, SIAM Journal on Control and Optimization, 58 (2020), 2332-2353.  doi: 10.1137/19M1279150.

[6]

R. ErbanJ. Haskovec and Y. Sun, A Cucker-Smale model with noise and delay, SIAM Journal on Applied Mathematics, 76 (2016), 1535-1557.  doi: 10.1137/15M1030467.

[7]

S.-Y. Ha and J. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean field limit, Communications in Mathematical Sciences, 7 (2009), 297-325.  doi: 10.4310/CMS.2009.v7.n2.a2.

[8]

S.-Y. HaK. Lee and D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Communications in Mathematical Sciences, 7 (2009), 453-469.  doi: 10.4310/CMS.2009.v7.n2.a9.

[9]

Y. Jin, Flocking of the Motsch-Tadmor model with a cut-off interaction function, Journal of Statistical Physics, 171 (2018), 345-360.  doi: 10.1007/s10955-018-2006-0.

[10]

Z. Li and S.-Y. Ha, On the Cucker-Smale flocking with alternating leaders, Quarterly of Applied Mathematics, 73 (2015), 693-709.  doi: 10.1090/qam/1401.

[11]

Y. Liu and J. Wu, Flocking and asymptotic velocity of the Cucker-Smale model with processing delay, Journal Mathematical Analysis and Applications, 415 (2014), 53-61.  doi: 10.1016/j.jmaa.2014.01.036.

[12]

Y. Liu and J. Wu, Local phase synchronization and clustering for the delayed phase-coupled oscillators with plastic coupling, Journal Mathematical Analysis and Applications, 444 (2016), 947-956.  doi: 10.1016/j.jmaa.2016.06.049.

[13]

Y. Liu and J. Wu, Opinion consensus with delay when the zero eigenvalue of the connection matrix is semi-simple, Journal Mathematical Analysis and Applications, 29 (2017), 1539-1551.  doi: 10.1007/s10884-016-9548-0.

[14]

X. Mao, Stochastic Differential Equations and Applications, Second edition. Horwood Publishing Limited, Chichester, 2008. doi: 10.1533/9780857099402.

[15]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, Journal of Statistical Physics, 144 (2011), 923-947.  doi: 10.1007/s10955-011-0285-9.

[16]

L. Pedeches, Asymptotic properties of various stochastic Cucker-Smale dynamics, Discrete and Continuous Dynamical Systems, 38 (2018), 2731-2762.  doi: 10.3934/dcds.2018115.

[17]

J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM Journal on Applied Mathematics, 68 (2007), 694-719.  doi: 10.1137/060673254.

[18]

T. V. TonN. T. Lihn and A. yagi, Flocking and non-flocking behaviour in a stochastic Cucker-Smale system, Analysis and Application, 12 (2014), 63-73.  doi: 10.1142/S0219530513500255.

[19]

X. WangL. Wang and J. Wu, Impacts of time delay on flocking dynamics of a two-agent flock model, Communications in Nonlinear Science and Numerical Simulation, 70 (2019), 80-88.  doi: 10.1016/j.cnsns.2018.10.017.

Figure 1.  $ \lambda = 3 $, $ \delta = 0 $ and $ r = 1 $. In this case, only the neighbours attract each other. Because the value of $ r $ is small, the system does not achieve flocking
Figure 2.  $ \lambda = 3 $, $ \delta = 0.1 $ and $ r = 1 $. In this case, not only the neighbours attract each other but also the distant relatives attract each other in a weak force. Hence unconditional flocking occurs
Figure 3.  $ \lambda = 3 $, $ \delta = 0 $ and $ r = 2 $. The system achieves flocking because of a bigger value of $ r $ than Fig. 1
Figure 4.  $ \lambda = 3 $, $ \delta = -0.1 $ and $ r = 2 $. In this case, the neighbours attract each other however the distant relatives repel each other in a weak force. The system also achieves flocking
Figure 5.  $ \lambda = 3 $, $ \delta = -0.3 $ and $ r = 3 $. By increasing the repulsive force between distant relatives, the system does not achieve flocking
Figure 6.  $ \lambda = 3 $, $ \delta = -0.5 $ and $ r = 3 $. Continue to increase the repulsive force between distant relatives, the system still does not achieve flocking
Figure 7.  $ \lambda = 3 $, $ \delta = -0.1 $, $ \sigma_i = 2(i = 1, 2, ..n) $ and $ r = 2 $. The system achieves flocking under a moderate stochastic disturbance
[1]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial and Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[2]

Xin Xu. Existence of monotone positive solutions of a neighbour based chemotaxis model and aggregation phenomenon. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4327-4348. doi: 10.3934/cpaa.2020195

[3]

Lining Ru, Xiaoping Xue. Flocking of Cucker-Smale model with intrinsic dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6817-6835. doi: 10.3934/dcdsb.2019168

[4]

Deena Schmidt, Janet Best, Mark S. Blumberg. Random graph and stochastic process contributions to network dynamics. Conference Publications, 2011, 2011 (Special) : 1279-1288. doi: 10.3934/proc.2011.2011.1279

[5]

Martin Friesen, Oleksandr Kutoviy. Stochastic Cucker-Smale flocking dynamics of jump-type. Kinetic and Related Models, 2020, 13 (2) : 211-247. doi: 10.3934/krm.2020008

[6]

Seung-Yeal Ha, Dohyun Kim, Jaeseung Lee, Se Eun Noh. Emergent dynamics of an orientation flocking model for multi-agent system. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2037-2060. doi: 10.3934/dcds.2020105

[7]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic and Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[8]

Seung-Yeal Ha, Jinwook Jung, Peter Kuchling. Emergence of anomalous flocking in the fractional Cucker-Smale model. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5465-5489. doi: 10.3934/dcds.2019223

[9]

Chun-Hsien Li, Suh-Yuh Yang. A new discrete Cucker-Smale flocking model under hierarchical leadership. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2587-2599. doi: 10.3934/dcdsb.2016062

[10]

Xin Meng, Cunchen Gao, Baoping Jiang, Hamid Reza Karimi. Observer-based SMC for stochastic systems with disturbance driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022027

[11]

Young-Pil Choi, Samir Salem. Cucker-Smale flocking particles with multiplicative noises: Stochastic mean-field limit and phase transition. Kinetic and Related Models, 2019, 12 (3) : 573-592. doi: 10.3934/krm.2019023

[12]

Sergei Avdonin, Jonathan Bell. Determining a distributed conductance parameter for a neuronal cable model defined on a tree graph. Inverse Problems and Imaging, 2015, 9 (3) : 645-659. doi: 10.3934/ipi.2015.9.645

[13]

Seung-Yeal Ha, Bingkang Huang, Qinghua Xiao, Xiongtao Zhang. A global existence of classical solutions to the two-dimensional kinetic-fluid model for flocking with large initial data. Communications on Pure and Applied Analysis, 2020, 19 (2) : 835-882. doi: 10.3934/cpaa.2020039

[14]

Jan Haskovec, Ioannis Markou. Asymptotic flocking in the Cucker-Smale model with reaction-type delays in the non-oscillatory regime. Kinetic and Related Models, 2020, 13 (4) : 795-813. doi: 10.3934/krm.2020027

[15]

Chiun-Chuan Chen, Seung-Yeal Ha, Xiongtao Zhang. The global well-posedness of the kinetic Cucker-Smale flocking model with chemotactic movements. Communications on Pure and Applied Analysis, 2018, 17 (2) : 505-538. doi: 10.3934/cpaa.2018028

[16]

Jianfei Cheng, Xiao Wang, Yicheng Liu. Collision-avoidance and flocking in the Cucker–Smale-type model with a discontinuous controller. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1733-1748. doi: 10.3934/dcdss.2021169

[17]

Brian Smith and Gilbert Weinstein. On the connectedness of the space of initial data for the Einstein equations. Electronic Research Announcements, 2000, 6: 52-63.

[18]

J. F. Toland. Path-connectedness in global bifurcation theory. Electronic Research Archive, 2021, 29 (6) : 4199-4213. doi: 10.3934/era.2021079

[19]

Le Li, Lihong Huang, Jianhong Wu. Cascade flocking with free-will. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 497-522. doi: 10.3934/dcdsb.2016.21.497

[20]

Le Li, Lihong Huang, Jianhong Wu. Flocking and invariance of velocity angles. Mathematical Biosciences & Engineering, 2016, 13 (2) : 369-380. doi: 10.3934/mbe.2015007

2021 Impact Factor: 1.169

Metrics

  • PDF downloads (440)
  • HTML views (441)
  • Cited by (0)

Other articles
by authors

[Back to Top]