
-
Previous Article
Local null controllability for a parabolic equation with local and nonlocal nonlinearities in moving domains
- EECT Home
- This Issue
-
Next Article
On the stabilization for the high-order Kadomtsev-Petviashvili and the Zakharov-Kuznetsov equations with localized damping
Exponential stability for a multi-particle system with piecewise interaction function and stochastic disturbance
College of Liberal Arts and Science, National University of Defense Technology, Changsha, 410073, China |
In this paper, a generalized Motsch-Tadmor model with piecewise interaction function is investigated, which can be viewed as a generalization of the model proposed in [
References:
[1] |
S.-M. Ahn and S.-Y. Ha, Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, Journal of Mathematical Physics, 51 (2010), 103301, 17pp.
doi: 10.1063/1.3496895. |
[2] |
F. Cucker and S. Smale,
Emergent behavior in flocks, IEEE Transactions on Automatic Control, 52 (2007), 852-862.
doi: 10.1109/TAC.2007.895842. |
[3] |
F. Cucker and S. Smale,
On the mathematics of emergence, Japanese Journal of Mathematics, 2 (2007), 197-227.
doi: 10.1007/s11537-007-0647-x. |
[4] |
F. Cucker and E. Mordecki,
Flocking in noisy environments, Journal de Mathématiques Pures et Appliquées, 89 (2008), 278-296.
doi: 10.1016/j.matpur.2007.12.002. |
[5] |
J.-G. Dong, S.-Y. Ha, J. Jung and D. Kim,
On the stochastic flocking of the Cucker-Smale flock with randomly switching topologies, SIAM Journal on Control and Optimization, 58 (2020), 2332-2353.
doi: 10.1137/19M1279150. |
[6] |
R. Erban, J. Haskovec and Y. Sun,
A Cucker-Smale model with noise and delay, SIAM Journal on Applied Mathematics, 76 (2016), 1535-1557.
doi: 10.1137/15M1030467. |
[7] |
S.-Y. Ha and J. Liu,
A simple proof of the Cucker-Smale flocking dynamics and mean field limit, Communications in Mathematical Sciences, 7 (2009), 297-325.
doi: 10.4310/CMS.2009.v7.n2.a2. |
[8] |
S.-Y. Ha, K. Lee and D. Levy,
Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Communications in Mathematical Sciences, 7 (2009), 453-469.
doi: 10.4310/CMS.2009.v7.n2.a9. |
[9] |
Y. Jin,
Flocking of the Motsch-Tadmor model with a cut-off interaction function, Journal of Statistical Physics, 171 (2018), 345-360.
doi: 10.1007/s10955-018-2006-0. |
[10] |
Z. Li and S.-Y. Ha,
On the Cucker-Smale flocking with alternating leaders, Quarterly of Applied Mathematics, 73 (2015), 693-709.
doi: 10.1090/qam/1401. |
[11] |
Y. Liu and J. Wu,
Flocking and asymptotic velocity of the Cucker-Smale model with processing delay, Journal Mathematical Analysis and Applications, 415 (2014), 53-61.
doi: 10.1016/j.jmaa.2014.01.036. |
[12] |
Y. Liu and J. Wu,
Local phase synchronization and clustering for the delayed phase-coupled oscillators with plastic coupling, Journal Mathematical Analysis and Applications, 444 (2016), 947-956.
doi: 10.1016/j.jmaa.2016.06.049. |
[13] |
Y. Liu and J. Wu,
Opinion consensus with delay when the zero eigenvalue of the connection matrix is semi-simple, Journal Mathematical Analysis and Applications, 29 (2017), 1539-1551.
doi: 10.1007/s10884-016-9548-0. |
[14] |
X. Mao, Stochastic Differential Equations and Applications, Second edition. Horwood Publishing Limited, Chichester, 2008.
doi: 10.1533/9780857099402. |
[15] |
S. Motsch and E. Tadmor,
A new model for self-organized dynamics and its flocking behavior, Journal of Statistical Physics, 144 (2011), 923-947.
doi: 10.1007/s10955-011-0285-9. |
[16] |
L. Pedeches,
Asymptotic properties of various stochastic Cucker-Smale dynamics, Discrete and Continuous Dynamical Systems, 38 (2018), 2731-2762.
doi: 10.3934/dcds.2018115. |
[17] |
J. Shen,
Cucker-Smale flocking under hierarchical leadership, SIAM Journal on Applied Mathematics, 68 (2007), 694-719.
doi: 10.1137/060673254. |
[18] |
T. V. Ton, N. T. Lihn and A. yagi,
Flocking and non-flocking behaviour in a stochastic Cucker-Smale system, Analysis and Application, 12 (2014), 63-73.
doi: 10.1142/S0219530513500255. |
[19] |
X. Wang, L. Wang and J. Wu,
Impacts of time delay on flocking dynamics of a two-agent flock model, Communications in Nonlinear Science and Numerical Simulation, 70 (2019), 80-88.
doi: 10.1016/j.cnsns.2018.10.017. |
show all references
References:
[1] |
S.-M. Ahn and S.-Y. Ha, Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, Journal of Mathematical Physics, 51 (2010), 103301, 17pp.
doi: 10.1063/1.3496895. |
[2] |
F. Cucker and S. Smale,
Emergent behavior in flocks, IEEE Transactions on Automatic Control, 52 (2007), 852-862.
doi: 10.1109/TAC.2007.895842. |
[3] |
F. Cucker and S. Smale,
On the mathematics of emergence, Japanese Journal of Mathematics, 2 (2007), 197-227.
doi: 10.1007/s11537-007-0647-x. |
[4] |
F. Cucker and E. Mordecki,
Flocking in noisy environments, Journal de Mathématiques Pures et Appliquées, 89 (2008), 278-296.
doi: 10.1016/j.matpur.2007.12.002. |
[5] |
J.-G. Dong, S.-Y. Ha, J. Jung and D. Kim,
On the stochastic flocking of the Cucker-Smale flock with randomly switching topologies, SIAM Journal on Control and Optimization, 58 (2020), 2332-2353.
doi: 10.1137/19M1279150. |
[6] |
R. Erban, J. Haskovec and Y. Sun,
A Cucker-Smale model with noise and delay, SIAM Journal on Applied Mathematics, 76 (2016), 1535-1557.
doi: 10.1137/15M1030467. |
[7] |
S.-Y. Ha and J. Liu,
A simple proof of the Cucker-Smale flocking dynamics and mean field limit, Communications in Mathematical Sciences, 7 (2009), 297-325.
doi: 10.4310/CMS.2009.v7.n2.a2. |
[8] |
S.-Y. Ha, K. Lee and D. Levy,
Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Communications in Mathematical Sciences, 7 (2009), 453-469.
doi: 10.4310/CMS.2009.v7.n2.a9. |
[9] |
Y. Jin,
Flocking of the Motsch-Tadmor model with a cut-off interaction function, Journal of Statistical Physics, 171 (2018), 345-360.
doi: 10.1007/s10955-018-2006-0. |
[10] |
Z. Li and S.-Y. Ha,
On the Cucker-Smale flocking with alternating leaders, Quarterly of Applied Mathematics, 73 (2015), 693-709.
doi: 10.1090/qam/1401. |
[11] |
Y. Liu and J. Wu,
Flocking and asymptotic velocity of the Cucker-Smale model with processing delay, Journal Mathematical Analysis and Applications, 415 (2014), 53-61.
doi: 10.1016/j.jmaa.2014.01.036. |
[12] |
Y. Liu and J. Wu,
Local phase synchronization and clustering for the delayed phase-coupled oscillators with plastic coupling, Journal Mathematical Analysis and Applications, 444 (2016), 947-956.
doi: 10.1016/j.jmaa.2016.06.049. |
[13] |
Y. Liu and J. Wu,
Opinion consensus with delay when the zero eigenvalue of the connection matrix is semi-simple, Journal Mathematical Analysis and Applications, 29 (2017), 1539-1551.
doi: 10.1007/s10884-016-9548-0. |
[14] |
X. Mao, Stochastic Differential Equations and Applications, Second edition. Horwood Publishing Limited, Chichester, 2008.
doi: 10.1533/9780857099402. |
[15] |
S. Motsch and E. Tadmor,
A new model for self-organized dynamics and its flocking behavior, Journal of Statistical Physics, 144 (2011), 923-947.
doi: 10.1007/s10955-011-0285-9. |
[16] |
L. Pedeches,
Asymptotic properties of various stochastic Cucker-Smale dynamics, Discrete and Continuous Dynamical Systems, 38 (2018), 2731-2762.
doi: 10.3934/dcds.2018115. |
[17] |
J. Shen,
Cucker-Smale flocking under hierarchical leadership, SIAM Journal on Applied Mathematics, 68 (2007), 694-719.
doi: 10.1137/060673254. |
[18] |
T. V. Ton, N. T. Lihn and A. yagi,
Flocking and non-flocking behaviour in a stochastic Cucker-Smale system, Analysis and Application, 12 (2014), 63-73.
doi: 10.1142/S0219530513500255. |
[19] |
X. Wang, L. Wang and J. Wu,
Impacts of time delay on flocking dynamics of a two-agent flock model, Communications in Nonlinear Science and Numerical Simulation, 70 (2019), 80-88.
doi: 10.1016/j.cnsns.2018.10.017. |






[1] |
Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial and Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099 |
[2] |
Xin Xu. Existence of monotone positive solutions of a neighbour based chemotaxis model and aggregation phenomenon. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4327-4348. doi: 10.3934/cpaa.2020195 |
[3] |
Lining Ru, Xiaoping Xue. Flocking of Cucker-Smale model with intrinsic dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6817-6835. doi: 10.3934/dcdsb.2019168 |
[4] |
Deena Schmidt, Janet Best, Mark S. Blumberg. Random graph and stochastic process contributions to network dynamics. Conference Publications, 2011, 2011 (Special) : 1279-1288. doi: 10.3934/proc.2011.2011.1279 |
[5] |
Martin Friesen, Oleksandr Kutoviy. Stochastic Cucker-Smale flocking dynamics of jump-type. Kinetic and Related Models, 2020, 13 (2) : 211-247. doi: 10.3934/krm.2020008 |
[6] |
Seung-Yeal Ha, Dohyun Kim, Jaeseung Lee, Se Eun Noh. Emergent dynamics of an orientation flocking model for multi-agent system. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2037-2060. doi: 10.3934/dcds.2020105 |
[7] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic and Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[8] |
Seung-Yeal Ha, Jinwook Jung, Peter Kuchling. Emergence of anomalous flocking in the fractional Cucker-Smale model. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5465-5489. doi: 10.3934/dcds.2019223 |
[9] |
Chun-Hsien Li, Suh-Yuh Yang. A new discrete Cucker-Smale flocking model under hierarchical leadership. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2587-2599. doi: 10.3934/dcdsb.2016062 |
[10] |
Xin Meng, Cunchen Gao, Baoping Jiang, Hamid Reza Karimi. Observer-based SMC for stochastic systems with disturbance driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022027 |
[11] |
Young-Pil Choi, Samir Salem. Cucker-Smale flocking particles with multiplicative noises: Stochastic mean-field limit and phase transition. Kinetic and Related Models, 2019, 12 (3) : 573-592. doi: 10.3934/krm.2019023 |
[12] |
Sergei Avdonin, Jonathan Bell. Determining a distributed conductance parameter for a neuronal cable model defined on a tree graph. Inverse Problems and Imaging, 2015, 9 (3) : 645-659. doi: 10.3934/ipi.2015.9.645 |
[13] |
Seung-Yeal Ha, Bingkang Huang, Qinghua Xiao, Xiongtao Zhang. A global existence of classical solutions to the two-dimensional kinetic-fluid model for flocking with large initial data. Communications on Pure and Applied Analysis, 2020, 19 (2) : 835-882. doi: 10.3934/cpaa.2020039 |
[14] |
Jan Haskovec, Ioannis Markou. Asymptotic flocking in the Cucker-Smale model with reaction-type delays in the non-oscillatory regime. Kinetic and Related Models, 2020, 13 (4) : 795-813. doi: 10.3934/krm.2020027 |
[15] |
Chiun-Chuan Chen, Seung-Yeal Ha, Xiongtao Zhang. The global well-posedness of the kinetic Cucker-Smale flocking model with chemotactic movements. Communications on Pure and Applied Analysis, 2018, 17 (2) : 505-538. doi: 10.3934/cpaa.2018028 |
[16] |
Jianfei Cheng, Xiao Wang, Yicheng Liu. Collision-avoidance and flocking in the Cucker–Smale-type model with a discontinuous controller. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1733-1748. doi: 10.3934/dcdss.2021169 |
[17] |
Brian Smith and Gilbert Weinstein. On the connectedness of the space of initial data for the Einstein equations. Electronic Research Announcements, 2000, 6: 52-63. |
[18] |
J. F. Toland. Path-connectedness in global bifurcation theory. Electronic Research Archive, 2021, 29 (6) : 4199-4213. doi: 10.3934/era.2021079 |
[19] |
Le Li, Lihong Huang, Jianhong Wu. Cascade flocking with free-will. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 497-522. doi: 10.3934/dcdsb.2016.21.497 |
[20] |
Le Li, Lihong Huang, Jianhong Wu. Flocking and invariance of velocity angles. Mathematical Biosciences & Engineering, 2016, 13 (2) : 369-380. doi: 10.3934/mbe.2015007 |
2021 Impact Factor: 1.169
Tools
Metrics
Other articles
by authors
[Back to Top]