• Previous Article
    Optimal distributed control of the three dimensional primitive equations of large-scale ocean and atmosphere dynamics
  • EECT Home
  • This Issue
  • Next Article
    Lifespan of solutions to a damped plate equation with logarithmic nonlinearity
doi: 10.3934/eect.2021029
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Persistence of superoscillations under the Schrödinger equation

1. 

Department of Mathematics & Statistics, Saint Louis University, Saint Louis, MO 63103, USA

2. 

Department of Mathematics & Statistics, Washington University in Saint Louis, Saint Louis, MO 63130, USA

* Corresponding author: Elodie Pozzi

Received  December 2020 Revised  April 2021 Early access July 2021

Fund Project: The second author is supported in part by a National Science Foundation DMS grant # 1800057 and Australian Research Council – DP 190100970

The goal of this paper is to provide new proofs of the persistence of superoscillations under the Schrödinger equation. Superoscillations were first put forward by Aharonov and have since received much study because of connections to physics, engineering, signal processing and information theory. An interesting mathematical question is to understand the time evolution of superoscillations under certain Schrödinger equations arising in physics. This paper provides an alternative proof of the persistence of superoscillations by some elementary convergence facts for sequence and series and some connections with certain polynomials and identities in combinatorics. The approach given opens new perspectives to establish persistence of superoscillations for the Schrödinger equation with more general potentials.

Citation: Elodie Pozzi, Brett D. Wick. Persistence of superoscillations under the Schrödinger equation. Evolution Equations & Control Theory, doi: 10.3934/eect.2021029
References:
[1]

Y. AharonovJ. BehrndtF. Colombo and P. Schlosser, Green's function for the Schrödinger equation with a generalized point interaction and stability of superoscillations, J. Differential Equations, 277 (2021), 153-190.  doi: 10.1016/j.jde.2020.12.029.  Google Scholar

[2]

Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa and J. Tollaksen, How superoscillating tunneling waves can overcome the step potential, Ann. Physics, 414 (2020), 168088, 19 pp. doi: 10.1016/j.aop.2020.168088.  Google Scholar

[3]

Y. AharonovF. ColomboI. SabadiniD. C. Struppa and J. Tollaksen, Schrödinger evolution of superoscillations under different potentials, Quantum Stud. Math. Found., 5 (2018), 485-504.  doi: 10.1007/s40509-018-0161-2.  Google Scholar

[4]

Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa and J. Tollaksen, Evolution of superoscillatory initial data in several variables in uniform electric field, J. Phys. A, 50 (2017), 185201, 19 pp. doi: 10.1088/1751-8121/aa66d9.  Google Scholar

[5]

Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa and J. Tollaksen, The mathematics of superoscillations, Mem. Amer. Math. Soc., 247 (2017). doi: 10.1090/memo/1174.  Google Scholar

[6]

Y. AharonovF. ColomboI. SabadiniD. C. Struppa and J. Tollaksen, Superoscillating sequences in several variables, J. Fourier Anal. Appl., 22 (2016), 751-767.  doi: 10.1007/s00041-015-9436-8.  Google Scholar

[7]

Y. AharonovF. ColomboI. SabadiniD. C. Struppa and J. Tollaksen, Superoscillating sequences as solutions of generalized Schrödinger equations, J. Math. Pures Appl., 103 (2015), 522-534.  doi: 10.1016/j.matpur.2014.07.001.  Google Scholar

[8]

Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa and J. Tollaksen, Evolution of superoscillatory data, J. Phys. A, 47 (2014), 20531, 18 pp. doi: 10.1088/1751-8113/47/20/205301.  Google Scholar

[9]

Y. AharonovF. ColomboI. SabadiniD. C. Struppa and J. Tollaksen, On some operators associated to superoscillations, Complex Anal. Oper. Theory, 7 (2013), 1299-1310.  doi: 10.1007/s11785-012-0227-9.  Google Scholar

[10]

Y. AharonovF. ColomboI. SabadiniD. C. Struppa and J. Tollaksen, On the Cauchy problem for the Schrödinger equation with superoscillatory initial data, J. Math. Pures Appl., 99 (2013), 165-173.  doi: 10.1016/j.matpur.2012.06.008.  Google Scholar

[11]

T. AokiF. ColomboI. Sabadini and D. C. Struppa, Continuity theorems for a class of convolution operators and applications to superoscillations, Ann. Mat. Pura Appl., 197 (2018), 1533-1545.  doi: 10.1007/s10231-018-0736-x.  Google Scholar

[12]

T. AokiF. ColomboI. Sabadini and D. C. Struppa, Continuity of some operators arising in the theory of superoscillations, Quantum Stud. Math. Found., 5 (2018), 463-476.  doi: 10.1007/s40509-018-0159-9.  Google Scholar

[13]

T. O. de Carvalho, Exact space-time propagator for the step potential, Phys. Rev. A, 47 (1993), 2562-2573.  doi: 10.1103/PhysRevA.47.2562.  Google Scholar

[14]

F. Colombo, J. Gantner and D. C. Struppa, Evolution by Schrödinger equation of Aharonov-Berry superoscillations in centrifugal potential, Proc. A., 475 (2019), 20180390, 17 pp. doi: 10.1098/rspa.2018.0390.  Google Scholar

[15]

F. Colombo, J. Gantner and D. C. Struppa, Evolution of superoscillations for Schrödinger equation in a uniform magnetic field, J. Math. Phys., 58 (2017), 092103, 17 pp. doi: 10.1063/1.4991489.  Google Scholar

[16]

F. Colombo, I. Sabadini and D. C. Struppa, An introduction to superoscillatory sequences, in Noncommutative Analysis, Operator Theory and Applications, Oper. Theory Adv. Appl., Vol. 252, Birkhäuser/Springer, 2016,105–121. doi: 10.1007/978-3-319-29116-1_7.  Google Scholar

[17]

F. ColomboI. SabadiniD. C. Struppa and A. Yger, Gauss sums, superoscillations and the Talbot carpet, J. Math. Pures Appl., 147 (2021), 163-178.  doi: 10.1016/j.matpur.2020.07.011.  Google Scholar

[18]

F. ColomboD. C. Struppa and A. Yger, Superoscillating sequences towards approximation in $S$ or $S'$-type spaces and extrapolation, J. Fourier Anal. Appl., 25 (2019), 242-266.  doi: 10.1007/s00041-018-9592-8.  Google Scholar

[19]

E. HightT. OrabyJ. Palacio and E. Suazo, On persistence of superoscillations for the Schrödinger equation with time-dependent quadratic Hamiltonians, Math. Methods Appl. Sci., 43 (2020), 1660-1674.  doi: 10.1002/mma.5992.  Google Scholar

[20]

G. Tsaur and J. Wang, Constructing Green functions of the Schrödinger equation by elementary transformations, Amer. J. Phys., 74 (2006), 600-606.  doi: 10.1119/1.2186688.  Google Scholar

show all references

References:
[1]

Y. AharonovJ. BehrndtF. Colombo and P. Schlosser, Green's function for the Schrödinger equation with a generalized point interaction and stability of superoscillations, J. Differential Equations, 277 (2021), 153-190.  doi: 10.1016/j.jde.2020.12.029.  Google Scholar

[2]

Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa and J. Tollaksen, How superoscillating tunneling waves can overcome the step potential, Ann. Physics, 414 (2020), 168088, 19 pp. doi: 10.1016/j.aop.2020.168088.  Google Scholar

[3]

Y. AharonovF. ColomboI. SabadiniD. C. Struppa and J. Tollaksen, Schrödinger evolution of superoscillations under different potentials, Quantum Stud. Math. Found., 5 (2018), 485-504.  doi: 10.1007/s40509-018-0161-2.  Google Scholar

[4]

Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa and J. Tollaksen, Evolution of superoscillatory initial data in several variables in uniform electric field, J. Phys. A, 50 (2017), 185201, 19 pp. doi: 10.1088/1751-8121/aa66d9.  Google Scholar

[5]

Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa and J. Tollaksen, The mathematics of superoscillations, Mem. Amer. Math. Soc., 247 (2017). doi: 10.1090/memo/1174.  Google Scholar

[6]

Y. AharonovF. ColomboI. SabadiniD. C. Struppa and J. Tollaksen, Superoscillating sequences in several variables, J. Fourier Anal. Appl., 22 (2016), 751-767.  doi: 10.1007/s00041-015-9436-8.  Google Scholar

[7]

Y. AharonovF. ColomboI. SabadiniD. C. Struppa and J. Tollaksen, Superoscillating sequences as solutions of generalized Schrödinger equations, J. Math. Pures Appl., 103 (2015), 522-534.  doi: 10.1016/j.matpur.2014.07.001.  Google Scholar

[8]

Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa and J. Tollaksen, Evolution of superoscillatory data, J. Phys. A, 47 (2014), 20531, 18 pp. doi: 10.1088/1751-8113/47/20/205301.  Google Scholar

[9]

Y. AharonovF. ColomboI. SabadiniD. C. Struppa and J. Tollaksen, On some operators associated to superoscillations, Complex Anal. Oper. Theory, 7 (2013), 1299-1310.  doi: 10.1007/s11785-012-0227-9.  Google Scholar

[10]

Y. AharonovF. ColomboI. SabadiniD. C. Struppa and J. Tollaksen, On the Cauchy problem for the Schrödinger equation with superoscillatory initial data, J. Math. Pures Appl., 99 (2013), 165-173.  doi: 10.1016/j.matpur.2012.06.008.  Google Scholar

[11]

T. AokiF. ColomboI. Sabadini and D. C. Struppa, Continuity theorems for a class of convolution operators and applications to superoscillations, Ann. Mat. Pura Appl., 197 (2018), 1533-1545.  doi: 10.1007/s10231-018-0736-x.  Google Scholar

[12]

T. AokiF. ColomboI. Sabadini and D. C. Struppa, Continuity of some operators arising in the theory of superoscillations, Quantum Stud. Math. Found., 5 (2018), 463-476.  doi: 10.1007/s40509-018-0159-9.  Google Scholar

[13]

T. O. de Carvalho, Exact space-time propagator for the step potential, Phys. Rev. A, 47 (1993), 2562-2573.  doi: 10.1103/PhysRevA.47.2562.  Google Scholar

[14]

F. Colombo, J. Gantner and D. C. Struppa, Evolution by Schrödinger equation of Aharonov-Berry superoscillations in centrifugal potential, Proc. A., 475 (2019), 20180390, 17 pp. doi: 10.1098/rspa.2018.0390.  Google Scholar

[15]

F. Colombo, J. Gantner and D. C. Struppa, Evolution of superoscillations for Schrödinger equation in a uniform magnetic field, J. Math. Phys., 58 (2017), 092103, 17 pp. doi: 10.1063/1.4991489.  Google Scholar

[16]

F. Colombo, I. Sabadini and D. C. Struppa, An introduction to superoscillatory sequences, in Noncommutative Analysis, Operator Theory and Applications, Oper. Theory Adv. Appl., Vol. 252, Birkhäuser/Springer, 2016,105–121. doi: 10.1007/978-3-319-29116-1_7.  Google Scholar

[17]

F. ColomboI. SabadiniD. C. Struppa and A. Yger, Gauss sums, superoscillations and the Talbot carpet, J. Math. Pures Appl., 147 (2021), 163-178.  doi: 10.1016/j.matpur.2020.07.011.  Google Scholar

[18]

F. ColomboD. C. Struppa and A. Yger, Superoscillating sequences towards approximation in $S$ or $S'$-type spaces and extrapolation, J. Fourier Anal. Appl., 25 (2019), 242-266.  doi: 10.1007/s00041-018-9592-8.  Google Scholar

[19]

E. HightT. OrabyJ. Palacio and E. Suazo, On persistence of superoscillations for the Schrödinger equation with time-dependent quadratic Hamiltonians, Math. Methods Appl. Sci., 43 (2020), 1660-1674.  doi: 10.1002/mma.5992.  Google Scholar

[20]

G. Tsaur and J. Wang, Constructing Green functions of the Schrödinger equation by elementary transformations, Amer. J. Phys., 74 (2006), 600-606.  doi: 10.1119/1.2186688.  Google Scholar

[1]

Camille Laurent. Internal control of the Schrödinger equation. Mathematical Control & Related Fields, 2014, 4 (2) : 161-186. doi: 10.3934/mcrf.2014.4.161

[2]

Claude Bardos, François Golse, Peter Markowich, Thierry Paul. On the classical limit of the Schrödinger equation. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 5689-5709. doi: 10.3934/dcds.2015.35.5689

[3]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[4]

Frank Wusterhausen. Schrödinger equation with noise on the boundary. Conference Publications, 2013, 2013 (special) : 791-796. doi: 10.3934/proc.2013.2013.791

[5]

Tai-Chia Lin, Tsung-Fang Wu. Multiple positive solutions of saturable nonlinear Schrödinger equations with intensity functions. Discrete & Continuous Dynamical Systems, 2020, 40 (4) : 2165-2187. doi: 10.3934/dcds.2020110

[6]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[7]

Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807

[8]

Alexander Arbieto, Carlos Matheus. On the periodic Schrödinger-Debye equation. Communications on Pure & Applied Analysis, 2008, 7 (3) : 699-713. doi: 10.3934/cpaa.2008.7.699

[9]

Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore. Infinitely many solutions for a perturbed Schrödinger equation. Conference Publications, 2015, 2015 (special) : 94-102. doi: 10.3934/proc.2015.0094

[10]

Tarek Saanouni. Remarks on the damped nonlinear Schrödinger equation. Evolution Equations & Control Theory, 2020, 9 (3) : 721-732. doi: 10.3934/eect.2020030

[11]

Hans Zwart, Yann Le Gorrec, Bernhard Maschke. Relating systems properties of the wave and the Schrödinger equation. Evolution Equations & Control Theory, 2015, 4 (2) : 233-240. doi: 10.3934/eect.2015.4.233

[12]

Kai Wang, Dun Zhao, Binhua Feng. Optimal nonlinearity control of Schrödinger equation. Evolution Equations & Control Theory, 2018, 7 (2) : 317-334. doi: 10.3934/eect.2018016

[13]

Claudianor O. Alves, Chao Ji. Multiple positive solutions for a Schrödinger logarithmic equation. Discrete & Continuous Dynamical Systems, 2020, 40 (5) : 2671-2685. doi: 10.3934/dcds.2020145

[14]

Jaime Cruz-Sampedro. Schrödinger-like operators and the eikonal equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 495-510. doi: 10.3934/cpaa.2014.13.495

[15]

Grégoire Allaire, M. Vanninathan. Homogenization of the Schrödinger equation with a time oscillating potential. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 1-16. doi: 10.3934/dcdsb.2006.6.1

[16]

Binhua Feng, Xiangxia Yuan. On the Cauchy problem for the Schrödinger-Hartree equation. Evolution Equations & Control Theory, 2015, 4 (4) : 431-445. doi: 10.3934/eect.2015.4.431

[17]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[18]

Wolfgang Wagner. A random cloud model for the Schrödinger equation. Kinetic & Related Models, 2014, 7 (2) : 361-379. doi: 10.3934/krm.2014.7.361

[19]

Binhua Feng, Dun Zhao. On the Cauchy problem for the XFEL Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4171-4186. doi: 10.3934/dcdsb.2018131

[20]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (42)
  • HTML views (104)
  • Cited by (0)

Other articles
by authors

[Back to Top]