In this paper, we consider a doubly nonlinear parabolic equation $ \partial _t \beta (u) - \nabla \cdot \alpha (x , \nabla u) \ni f $ with the homogeneous Dirichlet boundary condition in a bounded domain, where $ \beta : \mathbb{R} \to 2 ^{ \mathbb{R} } $ is a maximal monotone graph satisfying $ 0 \in \beta (0) $ and $ \nabla \cdot \alpha (x , \nabla u ) $ stands for a generalized $ p $-Laplacian. Existence of solution to the initial boundary value problem of this equation has been studied in an enormous number of papers for the case where single-valuedness, coerciveness, or some growth condition is imposed on $ \beta $. However, there are a few results for the case where such assumptions are removed and it is difficult to construct an abstract theory which covers the case for $ 1 < p < 2 $. Main purpose of this paper is to show the solvability of the initial boundary value problem for any $ p \in (1, \infty ) $ without any conditions for $ \beta $ except $ 0 \in \beta (0) $. We also discuss the uniqueness of solution by using properties of entropy solution.
Citation: |
[1] |
S. Aizicovici and V. M. Hokkanen, Doubly nonlinear equations with unbounded operators, Nonlinear Anal., 58 (2004), 591-607.
doi: 10.1016/j.na.2003.10.029.![]() ![]() ![]() |
[2] |
G. Akagi and U. Stefanelli, Doubly nonlinear equations as convex minimization, SIAM J. Math. Anal., 46 (2014), 1922-1945.
doi: 10.1137/13091909X.![]() ![]() ![]() |
[3] |
H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z., 183 (1983), 311-341.
doi: 10.1007/BF01176474.![]() ![]() ![]() |
[4] |
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, New York, 2000.
![]() ![]() |
[5] |
K. Ammar, Renormalized entropy solutions for degenerate nonlinear evolution problems, Electron. J. Differential Equations, 147 (2009), 32 pp.
![]() ![]() |
[6] |
K. Ammar and P. Wittbold, Existence of renormalized solutions of degenerate elliptic-parabolic problems, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 477-496.
doi: 10.1017/S0308210500002493.![]() ![]() ![]() |
[7] |
F. Andreu, J. M. Mazon, J. Toledo and N. Igbida, A degenerate elliptic-parabolic problem with nonlinear dynamical boundary conditions, Interfaces Free Bound., 8 (2006), 447-479.
doi: 10.4171/IFB/151.![]() ![]() ![]() |
[8] |
H. Attouch, Variational Convergence for Functions and Operators, Pitman, London, 1984.
![]() ![]() |
[9] |
A. Bamberger, Étude d'une équation doublement non linéaire, J. Functional Analysis, 24 (1977), 148-155.
doi: 10.1016/0022-1236(77)90051-9.![]() ![]() ![]() |
[10] |
V. Barbu, Existence for nonlinear Volterra equations in Hilbert spaces, SIAM J. Math. Anal., 10 (1979), 552-569.
doi: 10.1137/0510052.![]() ![]() ![]() |
[11] |
V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer, New York, 2010.
doi: 10.1007/978-1-4419-5542-5.![]() ![]() ![]() |
[12] |
V. Barbu and A. Favini, Existence for an implicit nonlinear differential equation, Nonlinear Anal., 32 (1998), 33-40.
doi: 10.1016/S0362-546X(97)00450-1.![]() ![]() ![]() |
[13] |
P. Bénilan, Equations d'évolution dans un Espace de Banach Quelconque et Applications, Thèse d'état, Orsay, 1972.
![]() |
[14] |
P. Bénilan and P. Wittbold, On mild and weak solutions of elliptic-parabolic problems, Adv. Differential Equations, 1 (1996), 1053-1073.
![]() ![]() |
[15] |
F. Bernis, Existence results for doubly nonlinear higher order parabolic equations on unbounded domains, Math. Ann., 279 (1988), 373-394.
doi: 10.1007/BF01456275.![]() ![]() ![]() |
[16] |
H. Brézis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, in Contributions to Nonlinear Functional Analysis (ed. E. H. Zarantonello), Academic Press, New York, (1971), 101–156.
doi: 10.1016/B978-0-12-775850-3.50009-1.![]() ![]() ![]() |
[17] |
H. Brézis, Intégrales convexes dans les espaces de Sobolev, Israel J. Math., 13 (1972), 9-23.
doi: 10.1007/BF02760227.![]() ![]() ![]() |
[18] |
H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans les Espaces de Hilbert, North-Holland, Amsterdam, 1973.
![]() ![]() |
[19] |
H. Brézis, M. G. Crandall and A. Pazy, Perturbations of nonlinear maximal monotone sets in Banach space, Comm. Pure Appl. Math., 23 (1970), 123-144.
doi: 10.1002/cpa.3160230107.![]() ![]() ![]() |
[20] |
J. Berryman and C. J. Holland, Asymptotic behavior of the nonlinear diffusion equation $n_t = $ $(n^{-1}n _ x)_x$, J. Math. Phys., 23 (1982), 983-987.
doi: 10.1063/1.525466.![]() ![]() ![]() |
[21] |
D. Blanchard and G. A. Francfort, Study of a doubly nonlinear heat equation with no growth assumptions on the parabolic term, SIAM J. Math. Anal., 19 (1988), 1032-1056.
doi: 10.1137/0519070.![]() ![]() ![]() |
[22] |
D. Blanchard and A. Porretta, Stefan problems with nonlinear diffusion and convection, J. Differential Equations, 210 (2005), 383-428.
doi: 10.1016/j.jde.2004.06.012.![]() ![]() ![]() |
[23] |
J. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Rational Mech. Anal., 147 (1999), 269-361.
doi: 10.1007/s002050050152.![]() ![]() ![]() |
[24] |
J. Carrillo and P. Wittbold, Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems, J. Differential Equations, 156 (1999), 93-121.
doi: 10.1006/jdeq.1998.3597.![]() ![]() ![]() |
[25] |
M.G. Crandall and T. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math., 93 (1971), 265-298.
doi: 10.2307/2373376.![]() ![]() ![]() |
[26] |
P. Daskalopoulos and M. A. del Pino, On the Cauchy problem for $u_t = \Delta \log u$ in higher dimensions, Math. Ann., 313 (1999), 189-206.
doi: 10.1007/s002080050257.![]() ![]() ![]() |
[27] |
J. I. Díaz, Qualitative study of nonlinear parabolic equations: An introduction, Extracta Math., 16 (2001), 303-341.
![]() ![]() |
[28] |
G. Díaz and I. Díaz, Finite extinction time for a class of nonlinear parabolic equations, Comm. Partial Differential Equations, 4 (1979), 1213-1231.
doi: 10.1080/03605307908820126.![]() ![]() ![]() |
[29] |
J. I. Díaz and J. F. Padial, Uniqueness and existence of solutions in the $BV _t(Q)$ space to a doubly nonlinear parabolic problem, Publ. Mat., 40 (1996), 527-560.
doi: 10.5565/PUBLMAT_40296_18.![]() ![]() ![]() |
[30] |
E. DiBenedetto and A. Friedman, The ill-posed Hele-Shaw model and the Stefan problem for supercooled water, Trans. Amer. Math. Soc., 282 (1984), 183-204.
doi: 10.1090/S0002-9947-1984-0728709-6.![]() ![]() ![]() |
[31] |
E. DiBenedetto and R. E. Showalter, Implicit degenerate evolution equations and applications, SIAM J. Math. Anal., 12 (1981), 731-751.
doi: 10.1137/0512062.![]() ![]() ![]() |
[32] |
J. Droniou, R. Eymard and K. S. Talbot, Convergence in $C([0, T];L^ 2(\Omega))$ of weak solutions to perturbed doubly degenerate parabolic equations, J. Differential Equations, 260 (2016), 7821-7860.
doi: 10.1016/j.jde.2016.02.004.![]() ![]() ![]() |
[33] |
J. R. Esteban, A. Rodríguez and J. L. Vázquez, A nonlinear heat equation with singular diffusivity, Comm. Partial Differential Equations, 13 (1988), 985-1039.
doi: 10.1080/03605308808820566.![]() ![]() ![]() |
[34] |
S. Fornaro, E. Henriques and V. Vespri, Harnack type inequalities for the parabolic logarithmic $p$-Laplacian equation, Matematiche (Catania), 75 (2020), 277-311.
doi: 10.4418/2020.75.1.13.![]() ![]() ![]() |
[35] |
O. Grange and F. Mignot, Sur la résolution d'une équation et d'une inéquation paraboliques non linéaires, J. Functional Analysis, 11 (1972), 77-92.
doi: 10.1016/0022-1236(72)90080-8.![]() ![]() ![]() |
[36] |
V. M. Hokkanen, An implicit nonlinear time dependent equation has a solution, J. Math. Anal. Appl., 161 (1991), 117-141.
doi: 10.1016/0022-247X(91)90364-6.![]() ![]() ![]() |
[37] |
N. Igbida and J. M. Urbano, Uniqueness for nonlinear degenerate problems, NoDEA Nonlinear Differential Equations Appl., 10 (2003), 287-307.
doi: 10.1007/s00030-003-1030-0.![]() ![]() ![]() |
[38] |
N. Kenmochi and I. Pawƚow, A class of nonlinear elliptic-parabolic equations with time-dependent constraints, Nonlinear Anal., 10 (1986), 1181-1202.
doi: 10.1016/0362-546X(86)90058-1.![]() ![]() ![]() |
[39] |
K. Kobayasi, The equivalence of weak solutions and entropy solutions of nonlinear degenerate second-order equations, J. Differential Equations, 189 (2003), 383-395.
doi: 10.1016/S0022-0396(02)00069-4.![]() ![]() ![]() |
[40] |
S. N. Kružkov, Generalized solutions of the Cauchy problem in the large for non-linear equations of first order, Dokl. Akad. Nauk SSSR, 187 (1969), 29–32; (English transl. in Soviet Math. Dokl., 10 (1969)).
![]() ![]() |
[41] |
S. N. Kružkov, First order quasilinear equations in several independent variables, Mat. Sb., 81 (1970), 228–255; (English transl. in Math. USSR Sb., 10 (1970)).
![]() |
[42] |
O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York-London, 1968.
![]() ![]() |
[43] |
J. L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites non Linéaires, Dunod; Gauthier-Villars, Paris, 1969.
![]() ![]() |
[44] |
A. Matas and J. Merker, On doubly nonlinear evolution equations with non-potential or dynamic relation between the state variables, J. Evol. Equ., 17 (2017), 869-881.
doi: 10.1007/s00028-016-0342-6.![]() ![]() ![]() |
[45] |
H. Miyoshi and M. Tsutsumi, Convergence of hydrodynamical limits for generalized Carleman models, Funkcial. Ekvac., 59 (2016), 351-382.
doi: 10.1619/fesi.59.351.![]() ![]() ![]() |
[46] |
Y. W. Qi, Existence and non-existence of a fast diffusion equation in $ \mathbb{R}^n $, J. Differential Equations, 136 (1997), 378-393.
doi: 10.1006/jdeq.1996.3246.![]() ![]() ![]() |
[47] |
P. A. Raviart, Sur la résolution de certaines equations paraboliques non linéaires, J. Functional Analysis, 5 (1970), 299-328.
doi: 10.1016/0022-1236(70)90031-5.![]() ![]() ![]() |
[48] |
R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, N.J., 1970.
![]() ![]() |
[49] |
A. Rodríguez, J.L. Vázquez and J. R. Esteban, The maximal solution of the logarithmic fast diffusion equation in two space dimensions, Adv. Differential Equations, 2 (1997), 867-894.
![]() ![]() |
[50] |
R. E. Showalter, Mathematical formulation of the Stefan problem, Internat. J. Engrg. Sci., 20 (1982), 909-912.
doi: 10.1016/0020-7225(82)90109-4.![]() ![]() ![]() |
[51] |
R. E. Showalter and N. J. Walkington, A diffusion system for fluid in fractured media, Differential Integral Equations, 3 (1990), 219-236.
![]() ![]() |
[52] |
U. Stefanelli, On a class of doubly nonlinear nonlocal evolution equations, Differential Integral Equations, 15 (2002), 897-922.
![]() ![]() |
[53] |
M. Tsutsumi, On solutions of some doubly nonlinear degenerate parabolic equations with absorption, J. Math. Anal. Appl., 132 (1988), 187-212.
doi: 10.1016/0022-247X(88)90053-4.![]() ![]() ![]() |
[54] |
J. L. Vázquez, Finite-time blow-down in the evolution of point masses by planar logarithmic diffusion, Discrete Contin. Dyn. Syst., 19 (2007), 1-35.
doi: 10.3934/dcds.2007.19.1.![]() ![]() ![]() |
[55] |
J. L. Vázquez, J. R. Esteban and A. Rodríguez, The fast diffusion equation with logarithmic nonlinearity and the evolution of conformal metrics in the plane, Adv. Differential Equations, 1 (1996), 21-50.
![]() ![]() |
[56] |
L. F. Wu, A new result for the porous medium equation derived from the Ricci flow, Bull. Amer. Math. Soc. (N.S.), 28 (1993), 90-94.
doi: 10.1090/S0273-0979-1993-00336-7.![]() ![]() ![]() |
[57] |
N. Yamazaki, Almost periodic stability for doubly nonlinear evolution equations generated by subdifferentials, Nonlinear Anal., 47 (2001), 1725-1736.
doi: 10.1016/S0362-546X(01)00305-4.![]() ![]() ![]() |
[58] |
K. Yosida, Functional Analysis, 6th edition, Springer, Berlin, 1980.
![]() ![]() |
[59] |
W. P. Ziemer, Weakly Differentiable Functions, Sobolev Spaces and Functions of Bounded Variation, Springer, New York, 1989.
doi: 10.1007/978-1-4612-1015-3.![]() ![]() ![]() |