The present work is based on the coupling of prion proliferation system together with chaperone which consists of two ODEs and a partial integro-differential equation. The existence and uniqueness of a positive global classical solution of the system is proved for the bounded degradation rates by the idea of evolution system theory in the state space $ \mathbb{R} \times \mathbb{R} \times L_{1}(Z,zdz). $ Moreover, the global weak solutions for unbounded degradation rates are discussed by weak compactness technique.
Citation: |
[1] |
H. Amann, Linear and Quasilinear Parabolic Problems: Abstract Linear Theory, Birkhäuser, Basel, 1995.
doi: 10.1007/978-3-0348-9221-6.![]() ![]() ![]() |
[2] |
J. Banasiak and L. Arlotti, Perturbations of Positive Semigroups with Applications, Springer Monographs in Mathematics. Springer-Verlag London, Ltd., London, 2006.
![]() ![]() |
[3] |
R. E. Edwards, Functional Analysis: Theory and Applications, Corrected reprint of the 1965 original. Dover Publications, Inc., New York, 1995.
![]() ![]() |
[4] |
H. Engler, J. Pruss and G. F. Webb, Analysis of a model for the dynamics of prions II, J. Math. Anal. Appl., 324 (2006), 98-117.
doi: 10.1016/j.jmaa.2005.11.021.![]() ![]() ![]() |
[5] |
P. Gabriel, Global stability for the prion equation with general incidence, Math. Biosc. Eng., 12 (2015), 789-801.
doi: 10.3934/mbe.2015.12.789.![]() ![]() ![]() |
[6] |
M. L. Greer, P. van den Driessche, L. Wang and G. F. Webb, Effects of general incidence and polymer joining on nucleated polymerzation in a model of prion proliferation, SIAM J. Appl. Math., 68 (2007), 154-170.
doi: 10.1137/06066076X.![]() ![]() ![]() |
[7] |
M. L. Greer, L. Pujo-Menjouet and G. F. Webb, A mathematical analysis of the dynamics of prion proliferation, J. Theoretial Biology, 242 (2006), 598-606.
doi: 10.1016/j.jtbi.2006.04.010.![]() ![]() ![]() |
[8] |
R. Kumar and P. Murali, Modeling and analysis of prion dynamics in the presence of a chaperone, Mathematical Biosciences, 213 (2008), 50-55.
doi: 10.1016/j.mbs.2008.02.002.![]() ![]() ![]() |
[9] |
R. Kumar, K. K. Choudhary and R. Kumar, Study of the solution of a semilinear evolution equation of a prion proliferation model in the presence of chaperone in a product space, Math. Meth. Appl. Sci., 44 (2021), 1942-1955.
doi: 10.1002/mma.6894.![]() ![]() ![]() |
[10] |
M. Lachowicz, P. Laurençot and D. Wrzosek, On the Oort–Hulst–Safronov coagulation equation and its relation to the Smoluchowski equation, SIAM J. Math. Anal., 34 (2003), 1399-1421.
doi: 10.1137/S0036141002414470.![]() ![]() ![]() |
[11] |
P. Laurençot and C. Walker, Well-posedness for a model of prion proliferation dynamics, J. Evolution Equations, 7 (2007), 241-264.
doi: 10.1007/s00028-006-0279-2.![]() ![]() ![]() |
[12] |
E. Leis and C. Walker, Existence of global classical and weak solutions to a prion equation with polymer joining, J. Evolution Equations, 17 (2017), 1227-1258.
doi: 10.1007/s00028-016-0379-6.![]() ![]() ![]() |
[13] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1.![]() ![]() ![]() |
[14] |
J. Pruss, L. Pujo-Menjouet, G. F. Webb and R. Zacher, Analysis of a model for the dynamics of prions, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 225-235.
doi: 10.3934/dcdsb.2006.6.225.![]() ![]() ![]() |
[15] |
G. Simonett and C. Walker, On the solvability of a mathematical model for prion proliferation, J. Math. Anal. Appl., 324 (2006), 580-603.
doi: 10.1016/j.jmaa.2005.12.036.![]() ![]() ![]() |
[16] |
I. I. Vrabie, Compactness Methods for Nonlinear Evolutions, With a foreword by A. Pazy. Second edition. Pitman Monographs and Surveys in Pure and Applied Mathematics, 75. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1995.
![]() ![]() |