• Previous Article
    New criteria for exponential stability in mean square of stochastic functional differential equations with infinite delay
  • EECT Home
  • This Issue
  • Next Article
    Existence and general decay of Balakrishnan-Taylor viscoelastic equation with nonlinear frictional damping and logarithmic source term
August  2022, 11(4): 1175-1190. doi: 10.3934/eect.2021039

Global classical and weak solutions of the prion proliferation model in the presence of chaperone in a banach space

Department of Mathematics, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani-333031, Rajasthan, India

* Corresponding author: Kapil Kumar Choudhary

Received  October 2020 Revised  April 2021 Published  August 2022 Early access  August 2021

The present work is based on the coupling of prion proliferation system together with chaperone which consists of two ODEs and a partial integro-differential equation. The existence and uniqueness of a positive global classical solution of the system is proved for the bounded degradation rates by the idea of evolution system theory in the state space $ \mathbb{R} \times \mathbb{R} \times L_{1}(Z,zdz). $ Moreover, the global weak solutions for unbounded degradation rates are discussed by weak compactness technique.

Citation: Kapil Kumar Choudhary, Rajiv Kumar, Rajesh Kumar. Global classical and weak solutions of the prion proliferation model in the presence of chaperone in a banach space. Evolution Equations and Control Theory, 2022, 11 (4) : 1175-1190. doi: 10.3934/eect.2021039
References:
[1]

H. Amann, Linear and Quasilinear Parabolic Problems: Abstract Linear Theory, Birkhäuser, Basel, 1995. doi: 10.1007/978-3-0348-9221-6.

[2]

J. Banasiak and L. Arlotti, Perturbations of Positive Semigroups with Applications, Springer Monographs in Mathematics. Springer-Verlag London, Ltd., London, 2006.

[3]

R. E. Edwards, Functional Analysis: Theory and Applications, Corrected reprint of the 1965 original. Dover Publications, Inc., New York, 1995.

[4]

H. EnglerJ. Pruss and G. F. Webb, Analysis of a model for the dynamics of prions II, J. Math. Anal. Appl., 324 (2006), 98-117.  doi: 10.1016/j.jmaa.2005.11.021.

[5]

P. Gabriel, Global stability for the prion equation with general incidence, Math. Biosc. Eng., 12 (2015), 789-801.  doi: 10.3934/mbe.2015.12.789.

[6]

M. L. GreerP. van den DriesscheL. Wang and G. F. Webb, Effects of general incidence and polymer joining on nucleated polymerzation in a model of prion proliferation, SIAM J. Appl. Math., 68 (2007), 154-170.  doi: 10.1137/06066076X.

[7]

M. L. GreerL. Pujo-Menjouet and G. F. Webb, A mathematical analysis of the dynamics of prion proliferation, J. Theoretial Biology, 242 (2006), 598-606.  doi: 10.1016/j.jtbi.2006.04.010.

[8]

R. Kumar and P. Murali, Modeling and analysis of prion dynamics in the presence of a chaperone, Mathematical Biosciences, 213 (2008), 50-55.  doi: 10.1016/j.mbs.2008.02.002.

[9]

R. KumarK. K. Choudhary and R. Kumar, Study of the solution of a semilinear evolution equation of a prion proliferation model in the presence of chaperone in a product space, Math. Meth. Appl. Sci., 44 (2021), 1942-1955.  doi: 10.1002/mma.6894.

[10]

M. LachowiczP. Laurençot and D. Wrzosek, On the Oort–Hulst–Safronov coagulation equation and its relation to the Smoluchowski equation, SIAM J. Math. Anal., 34 (2003), 1399-1421.  doi: 10.1137/S0036141002414470.

[11]

P. Laurençot and C. Walker, Well-posedness for a model of prion proliferation dynamics, J. Evolution Equations, 7 (2007), 241-264.  doi: 10.1007/s00028-006-0279-2.

[12]

E. Leis and C. Walker, Existence of global classical and weak solutions to a prion equation with polymer joining, J. Evolution Equations, 17 (2017), 1227-1258.  doi: 10.1007/s00028-016-0379-6.

[13]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[14]

J. PrussL. Pujo-MenjouetG. F. Webb and R. Zacher, Analysis of a model for the dynamics of prions, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 225-235.  doi: 10.3934/dcdsb.2006.6.225.

[15]

G. Simonett and C. Walker, On the solvability of a mathematical model for prion proliferation, J. Math. Anal. Appl., 324 (2006), 580-603.  doi: 10.1016/j.jmaa.2005.12.036.

[16]

I. I. Vrabie, Compactness Methods for Nonlinear Evolutions, With a foreword by A. Pazy. Second edition. Pitman Monographs and Surveys in Pure and Applied Mathematics, 75. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1995.

show all references

References:
[1]

H. Amann, Linear and Quasilinear Parabolic Problems: Abstract Linear Theory, Birkhäuser, Basel, 1995. doi: 10.1007/978-3-0348-9221-6.

[2]

J. Banasiak and L. Arlotti, Perturbations of Positive Semigroups with Applications, Springer Monographs in Mathematics. Springer-Verlag London, Ltd., London, 2006.

[3]

R. E. Edwards, Functional Analysis: Theory and Applications, Corrected reprint of the 1965 original. Dover Publications, Inc., New York, 1995.

[4]

H. EnglerJ. Pruss and G. F. Webb, Analysis of a model for the dynamics of prions II, J. Math. Anal. Appl., 324 (2006), 98-117.  doi: 10.1016/j.jmaa.2005.11.021.

[5]

P. Gabriel, Global stability for the prion equation with general incidence, Math. Biosc. Eng., 12 (2015), 789-801.  doi: 10.3934/mbe.2015.12.789.

[6]

M. L. GreerP. van den DriesscheL. Wang and G. F. Webb, Effects of general incidence and polymer joining on nucleated polymerzation in a model of prion proliferation, SIAM J. Appl. Math., 68 (2007), 154-170.  doi: 10.1137/06066076X.

[7]

M. L. GreerL. Pujo-Menjouet and G. F. Webb, A mathematical analysis of the dynamics of prion proliferation, J. Theoretial Biology, 242 (2006), 598-606.  doi: 10.1016/j.jtbi.2006.04.010.

[8]

R. Kumar and P. Murali, Modeling and analysis of prion dynamics in the presence of a chaperone, Mathematical Biosciences, 213 (2008), 50-55.  doi: 10.1016/j.mbs.2008.02.002.

[9]

R. KumarK. K. Choudhary and R. Kumar, Study of the solution of a semilinear evolution equation of a prion proliferation model in the presence of chaperone in a product space, Math. Meth. Appl. Sci., 44 (2021), 1942-1955.  doi: 10.1002/mma.6894.

[10]

M. LachowiczP. Laurençot and D. Wrzosek, On the Oort–Hulst–Safronov coagulation equation and its relation to the Smoluchowski equation, SIAM J. Math. Anal., 34 (2003), 1399-1421.  doi: 10.1137/S0036141002414470.

[11]

P. Laurençot and C. Walker, Well-posedness for a model of prion proliferation dynamics, J. Evolution Equations, 7 (2007), 241-264.  doi: 10.1007/s00028-006-0279-2.

[12]

E. Leis and C. Walker, Existence of global classical and weak solutions to a prion equation with polymer joining, J. Evolution Equations, 17 (2017), 1227-1258.  doi: 10.1007/s00028-016-0379-6.

[13]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[14]

J. PrussL. Pujo-MenjouetG. F. Webb and R. Zacher, Analysis of a model for the dynamics of prions, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 225-235.  doi: 10.3934/dcdsb.2006.6.225.

[15]

G. Simonett and C. Walker, On the solvability of a mathematical model for prion proliferation, J. Math. Anal. Appl., 324 (2006), 580-603.  doi: 10.1016/j.jmaa.2005.12.036.

[16]

I. I. Vrabie, Compactness Methods for Nonlinear Evolutions, With a foreword by A. Pazy. Second edition. Pitman Monographs and Surveys in Pure and Applied Mathematics, 75. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1995.

[1]

Jacek Banasiak, Marcin Moszyński. Hypercyclicity and chaoticity spaces of $C_0$ semigroups. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 577-587. doi: 10.3934/dcds.2008.20.577

[2]

José A. Conejero, Alfredo Peris. Hypercyclic translation $C_0$-semigroups on complex sectors. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1195-1208. doi: 10.3934/dcds.2009.25.1195

[3]

Olga Bernardi, Franco Cardin. On $C^0$-variational solutions for Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 385-406. doi: 10.3934/dcds.2011.31.385

[4]

Tadas Telksnys, Zenonas Navickas, Miguel A. F. Sanjuán, Romas Marcinkevicius, Minvydas Ragulskis. Kink solitary solutions to a hepatitis C evolution model. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4427-4447. doi: 10.3934/dcdsb.2020106

[5]

Wendong Wang, Liqun Zhang. The $C^{\alpha}$ regularity of weak solutions of ultraparabolic equations. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1261-1275. doi: 10.3934/dcds.2011.29.1261

[6]

Ionel Sorin Ciuperca, Erwan Hingant, Liviu Iulian Palade, Laurent Pujo-Menjouet. Fragmentation and monomer lengthening of rod-like polymers, a relevant model for prion proliferation. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 775-799. doi: 10.3934/dcdsb.2012.17.775

[7]

John D. Nagy, Dieter Armbruster. Evolution of uncontrolled proliferation and the angiogenic switch in cancer. Mathematical Biosciences & Engineering, 2012, 9 (4) : 843-876. doi: 10.3934/mbe.2012.9.843

[8]

Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041

[9]

Eduardo Hernández, Donal O'Regan. $C^{\alpha}$-Hölder classical solutions for non-autonomous neutral differential equations. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 241-260. doi: 10.3934/dcds.2011.29.241

[10]

Piotr Kościelniak, Marcin Mazur. On $C^0$ genericity of various shadowing properties. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 523-530. doi: 10.3934/dcds.2005.12.523

[11]

Kingshook Biswas. Maximal abelian torsion subgroups of Diff( C,0). Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 839-844. doi: 10.3934/dcds.2011.29.839

[12]

Yemin Chen. Smoothness of classical solutions to the Vlasov-Poisson-Landau system. Kinetic and Related Models, 2008, 1 (3) : 369-386. doi: 10.3934/krm.2008.1.369

[13]

Yemin Chen. Smoothness of classical solutions to the Vlasov-Maxwell-Landau system near Maxwellians. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 889-910. doi: 10.3934/dcds.2008.20.889

[14]

Xiangdong Zhao. Global boundedness of classical solutions to a logistic chemotaxis system with singular sensitivity. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5095-5100. doi: 10.3934/dcdsb.2020334

[15]

Dayton Preissl, Christophe Cheverry, Slim Ibrahim. Uniform lifetime for classical solutions to the Hot, Magnetized, Relativistic Vlasov Maxwell system. Kinetic and Related Models, 2021, 14 (6) : 1035-1079. doi: 10.3934/krm.2021042

[16]

Yuming Chu, Yihang Hao, Xiangao Liu. Global weak solutions to a general liquid crystals system. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2681-2710. doi: 10.3934/dcds.2013.33.2681

[17]

Fengping Yao, Shulin Zhou. Interior $C^{1,\alpha}$ regularity of weak solutions for a class of quasilinear elliptic equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1635-1649. doi: 10.3934/dcdsb.2016015

[18]

Lavinia Roncoroni. Exact lumping of feller semigroups: A $C^{\star}$-algebras approach. Conference Publications, 2015, 2015 (special) : 965-973. doi: 10.3934/proc.2015.0965

[19]

Wael Bahsoun, Benoît Saussol. Linear response in the intermittent family: Differentiation in a weighted $C^0$-norm. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6657-6668. doi: 10.3934/dcds.2016089

[20]

Salvador Addas-Zanata, Fábio A. Tal. Support of maximizing measures for typical $\mathcal{C}^0$ dynamics on compact manifolds. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 795-804. doi: 10.3934/dcds.2010.26.795

2021 Impact Factor: 1.169

Metrics

  • PDF downloads (474)
  • HTML views (384)
  • Cited by (0)

[Back to Top]