• Previous Article
    New criteria for exponential stability in mean square of stochastic functional differential equations with infinite delay
  • EECT Home
  • This Issue
  • Next Article
    Optimal control of mixed local-nonlocal parabolic PDE with singular boundary-exterior data
doi: 10.3934/eect.2021042
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Well-posed control problems related to second-order differential inclusions

LMPA Laboratory, Department of Mathematics, Jijel University, 18000, Algeria

* Corresponding author: Mustapha Fateh Yarou

Received  September 2020 Revised  July 2021 Early access August 2021

The paper deals with quadratic optimal control problems, we study the equivalence between well-posed problems and affinity on the control for a second-order differential inclusions with two-points conditions, governed by a maximal monotone operator in a finite dimensional space.

Citation: Doria Affane, Mustapha Fateh Yarou. Well-posed control problems related to second-order differential inclusions. Evolution Equations and Control Theory, doi: 10.3934/eect.2021042
References:
[1]

S. Adly, A Variational Approach to Nonsmooth Dynamics: Applications in Unilateral Mechanics and Electronics, Springer Briefs in Mathematics, 2017. doi: 10.1007/978-3-319-68658-5.

[2]

S. AdlyB. Brogliato and B. K. Le, Well-posedness, robustness and stability analysis of a set-valued controller for Lagrangian systems, SIAM J. Control Optim., 51 (2013), 1592-1614.  doi: 10.1137/120872450.

[3]

D. Affane, Quelques Problèmes de Contrôle Optimal pour des Inclusions Différentielles, Ph.D. thesis, MSBY University of Jijel, Algeria, 2012.

[4]

D. Affane and D. Azzam-Laouir, A control problem governed by a second-order differential inclusion, Applic. Anal., 88 (2009), 1677-1690.  doi: 10.1080/00036810903330520.

[5]

E. Asplund, $\breve{C}$eby$\breve{s}$ev sets in Hilbert space, Trans. Amer. Math. Soc., 114 (1969), 235-240.  doi: 10.2307/1995279.

[6]

H. Attouch, Variational Convergence for Functions and Operators, Pitman, Boston, 1984.

[7]

H. Attouch, R. I. Bot and E. R. Csetnek, Fast optization via inertial dynamics with closed-loop damping, arXiv: 2008.02261v3, [math.OC] (2021), 1–63.

[8]

H. Attouch and J. B. Wets, Quantitative stability of variational systems: III. $\epsilon$-appoximate solutions, (Title: Lipschitzian stabilty of $\epsilon$-appoximate solutions in convex optimization), IIASA. Laxenburg, 25 (1987), 87.

[9]

H. Attouch and J. B. Wets, Quantitative stability of variational systems: I. The epigraphical distance, Trans. Amer. Math. Soc., 328 (1991), 695-729.  doi: 10.2307/2001800.

[10]

H. Attouch and J. B. Wets, Quantitative stability of variational systems: II. A framework for nonlinear conditioning, SIAM J. Optimization, 3 (1993), 359-381.  doi: 10.1137/0803016.

[11]

D. Azzam-Laouir and S. Lounis, Nonconvex perturbations of second order maximal monotone differential inclusions, Topol. Meth. Nonlin. Anal., 35 (2010), 305-317. 

[12]

J. Bastien, Systémes Dynamiques Discrets Avec Frottement et Identification en Biomécanique, Mémoire d'Habilitation à Diriger des Recherches, Université Lyon 1, 2013.

[13]

G. Beer, Topologies on Closed and Closed Convex Sets, Mathematics and Its Applications, Kluwer Academic Publishers Group, Dordrecht, 1993. doi: 10.1007/978-94-015-8149-3.

[14]

B. Brogliato and A. Tanwani, Dynamical systems coupled with monotone set-valued operators: Formalisms, applications, well-posedness, and stability, SIAM Review, Society for Industrial and Applied Mathematics, 62 (2020), 3-129.  doi: 10.1137/18M1234795.

[15]

A. L. Dontchev and T. Zolezzi, Well-Posed Optimization Problems, Springer-Verlag, Berlin Heidelberg, 1993. doi: 10.1007/BFb0084195.

[16]

I. Ekeland and R. Temam, Analyse Convexe and Problémes Variationelles, Dunod and Gauthier-Villars, Paris, 1974.

[17]

A. D. Ioffe and A. J. Zaslavski, Variational principles and well-posedness in optimization and calculus of variations, SIAM J. Control Optim., 38 (2000), 566-581.  doi: 10.1137/S0363012998335632.

[18]

R. Lucchetti and T. Zolezzi, On well-posedness and stability analysis in optimization, in: Mathematical programming with data perturbations, Lecture Notes in Pure and Appl. Math., Dekker, New York, 195 (1997), 223-251.

[19]

E. Muselli, Affinity and well-posedness for optimal control problems in hilbert spaces, J. Convex Anal., 14 (2007), 767-784. 

[20]

L. Paoli and A. Petrov, Global solutions to phase change models with heat transfer for a class of smart materials, Nonlinear Anal. Real World Appl., 17 (2014), 47-63.  doi: 10.1016/j.nonrwa.2013.10.005.

[21]

T. Zolezzi, A characterization of well-posed optimal control systems, SIAM J. Control Optim., 19 (1981), 604-616.  doi: 10.1137/0319038.

[22]

T. Zolezzi, Well-posedness criteria in optimization with application to the calculus of variations, Nonlinear Anal., 25 (1995), 437-453.  doi: 10.1016/0362-546X(94)00142-5.

[23]

T. Zolezzi, Extended well-posedness of optimization problems, J. Optim. Theory Appl., 91 (1996), 257-266.  doi: 10.1007/BF02192292.

[24]

T. Zolezzi, Well-posedness and conditioning of optimization problems, Pliska Stud. Math. Bulgar., 12 (1998), 267-280. 

show all references

References:
[1]

S. Adly, A Variational Approach to Nonsmooth Dynamics: Applications in Unilateral Mechanics and Electronics, Springer Briefs in Mathematics, 2017. doi: 10.1007/978-3-319-68658-5.

[2]

S. AdlyB. Brogliato and B. K. Le, Well-posedness, robustness and stability analysis of a set-valued controller for Lagrangian systems, SIAM J. Control Optim., 51 (2013), 1592-1614.  doi: 10.1137/120872450.

[3]

D. Affane, Quelques Problèmes de Contrôle Optimal pour des Inclusions Différentielles, Ph.D. thesis, MSBY University of Jijel, Algeria, 2012.

[4]

D. Affane and D. Azzam-Laouir, A control problem governed by a second-order differential inclusion, Applic. Anal., 88 (2009), 1677-1690.  doi: 10.1080/00036810903330520.

[5]

E. Asplund, $\breve{C}$eby$\breve{s}$ev sets in Hilbert space, Trans. Amer. Math. Soc., 114 (1969), 235-240.  doi: 10.2307/1995279.

[6]

H. Attouch, Variational Convergence for Functions and Operators, Pitman, Boston, 1984.

[7]

H. Attouch, R. I. Bot and E. R. Csetnek, Fast optization via inertial dynamics with closed-loop damping, arXiv: 2008.02261v3, [math.OC] (2021), 1–63.

[8]

H. Attouch and J. B. Wets, Quantitative stability of variational systems: III. $\epsilon$-appoximate solutions, (Title: Lipschitzian stabilty of $\epsilon$-appoximate solutions in convex optimization), IIASA. Laxenburg, 25 (1987), 87.

[9]

H. Attouch and J. B. Wets, Quantitative stability of variational systems: I. The epigraphical distance, Trans. Amer. Math. Soc., 328 (1991), 695-729.  doi: 10.2307/2001800.

[10]

H. Attouch and J. B. Wets, Quantitative stability of variational systems: II. A framework for nonlinear conditioning, SIAM J. Optimization, 3 (1993), 359-381.  doi: 10.1137/0803016.

[11]

D. Azzam-Laouir and S. Lounis, Nonconvex perturbations of second order maximal monotone differential inclusions, Topol. Meth. Nonlin. Anal., 35 (2010), 305-317. 

[12]

J. Bastien, Systémes Dynamiques Discrets Avec Frottement et Identification en Biomécanique, Mémoire d'Habilitation à Diriger des Recherches, Université Lyon 1, 2013.

[13]

G. Beer, Topologies on Closed and Closed Convex Sets, Mathematics and Its Applications, Kluwer Academic Publishers Group, Dordrecht, 1993. doi: 10.1007/978-94-015-8149-3.

[14]

B. Brogliato and A. Tanwani, Dynamical systems coupled with monotone set-valued operators: Formalisms, applications, well-posedness, and stability, SIAM Review, Society for Industrial and Applied Mathematics, 62 (2020), 3-129.  doi: 10.1137/18M1234795.

[15]

A. L. Dontchev and T. Zolezzi, Well-Posed Optimization Problems, Springer-Verlag, Berlin Heidelberg, 1993. doi: 10.1007/BFb0084195.

[16]

I. Ekeland and R. Temam, Analyse Convexe and Problémes Variationelles, Dunod and Gauthier-Villars, Paris, 1974.

[17]

A. D. Ioffe and A. J. Zaslavski, Variational principles and well-posedness in optimization and calculus of variations, SIAM J. Control Optim., 38 (2000), 566-581.  doi: 10.1137/S0363012998335632.

[18]

R. Lucchetti and T. Zolezzi, On well-posedness and stability analysis in optimization, in: Mathematical programming with data perturbations, Lecture Notes in Pure and Appl. Math., Dekker, New York, 195 (1997), 223-251.

[19]

E. Muselli, Affinity and well-posedness for optimal control problems in hilbert spaces, J. Convex Anal., 14 (2007), 767-784. 

[20]

L. Paoli and A. Petrov, Global solutions to phase change models with heat transfer for a class of smart materials, Nonlinear Anal. Real World Appl., 17 (2014), 47-63.  doi: 10.1016/j.nonrwa.2013.10.005.

[21]

T. Zolezzi, A characterization of well-posed optimal control systems, SIAM J. Control Optim., 19 (1981), 604-616.  doi: 10.1137/0319038.

[22]

T. Zolezzi, Well-posedness criteria in optimization with application to the calculus of variations, Nonlinear Anal., 25 (1995), 437-453.  doi: 10.1016/0362-546X(94)00142-5.

[23]

T. Zolezzi, Extended well-posedness of optimization problems, J. Optim. Theory Appl., 91 (1996), 257-266.  doi: 10.1007/BF02192292.

[24]

T. Zolezzi, Well-posedness and conditioning of optimization problems, Pliska Stud. Math. Bulgar., 12 (1998), 267-280. 

[1]

Nguyen Thi Hoai. Asymptotic approximation to a solution of a singularly perturbed linear-quadratic optimal control problem with second-order linear ordinary differential equation of state variable. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 495-512. doi: 10.3934/naco.2020040

[2]

Soumia Saïdi. On a second-order functional evolution problem with time and state dependent maximal monotone operators. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021034

[3]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines. Inverse Problems and Imaging, 2013, 7 (2) : 307-340. doi: 10.3934/ipi.2013.7.307

[4]

Leonardo Colombo, David Martín de Diego. Second-order variational problems on Lie groupoids and optimal control applications. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6023-6064. doi: 10.3934/dcds.2016064

[5]

Wenming Hu, Huicheng Yin. Well-posedness of low regularity solutions to the second order strictly hyperbolic equations with non-Lipschitzian coefficients. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1891-1919. doi: 10.3934/cpaa.2019088

[6]

Rui Li, Yingjing Shi. Finite-time optimal consensus control for second-order multi-agent systems. Journal of Industrial and Management Optimization, 2014, 10 (3) : 929-943. doi: 10.3934/jimo.2014.10.929

[7]

Hongwei Lou, Jiongmin Yong. Second-order necessary conditions for optimal control of semilinear elliptic equations with leading term containing controls. Mathematical Control and Related Fields, 2018, 8 (1) : 57-88. doi: 10.3934/mcrf.2018003

[8]

Hongwei Lou. Second-order necessary/sufficient conditions for optimal control problems in the absence of linear structure. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1445-1464. doi: 10.3934/dcdsb.2010.14.1445

[9]

Leonardo Colombo. Second-order constrained variational problems on Lie algebroids: Applications to Optimal Control. Journal of Geometric Mechanics, 2017, 9 (1) : 1-45. doi: 10.3934/jgm.2017001

[10]

Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123

[11]

Hancheng Guo, Jie Xiong. A second-order stochastic maximum principle for generalized mean-field singular control problem. Mathematical Control and Related Fields, 2018, 8 (2) : 451-473. doi: 10.3934/mcrf.2018018

[12]

Qingsong Duan, Mengwei Xu, Liwei Zhang, Sainan Zhang. Hadamard directional differentiability of the optimal value of a linear second-order conic programming problem. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3085-3098. doi: 10.3934/jimo.2020108

[13]

Pierluigi Colli, Gianni Gilardi, Elisabetta Rocca, Jürgen Sprekels. Well-posedness and optimal control for a Cahn–Hilliard–Oono system with control in the mass term. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2135-2172. doi: 10.3934/dcdss.2022001

[14]

Xiaoqiang Dai, Shaohua Chen. Global well-posedness for the Cauchy problem of generalized Boussinesq equations in the control problem regarding initial data. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4201-4211. doi: 10.3934/dcdss.2021114

[15]

Changjie Fang, Weimin Han. Well-posedness and optimal control of a hemivariational inequality for nonstationary Stokes fluid flow. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5369-5386. doi: 10.3934/dcds.2016036

[16]

Mircea Sofonea, Yi-bin Xiao. Tykhonov well-posedness of a viscoplastic contact problem. Evolution Equations and Control Theory, 2020, 9 (4) : 1167-1185. doi: 10.3934/eect.2020048

[17]

Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027

[18]

Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3749-3778. doi: 10.3934/dcdsb.2021205

[19]

W. Sarlet, G. E. Prince, M. Crampin. Generalized submersiveness of second-order ordinary differential equations. Journal of Geometric Mechanics, 2009, 1 (2) : 209-221. doi: 10.3934/jgm.2009.1.209

[20]

José F. Cariñena, Irina Gheorghiu, Eduardo Martínez. Jacobi fields for second-order differential equations on Lie algebroids. Conference Publications, 2015, 2015 (special) : 213-222. doi: 10.3934/proc.2015.0213

2021 Impact Factor: 1.169

Article outline

[Back to Top]