We consider a nonlinear evolution equation in the form
together with its singular limit problem as
where
and
$ \begin{align*} \left\{\begin{aligned} & \phi_{t}+N^\alpha (N \phi + g(\phi)-u)+\sigma\phi = 0,\\&\varepsilon u_t+\phi_t+N u = 0,\end{aligned}\right.\quad\alpha = 0, 1,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {{{\rm{S}}_\varepsilon }} \right) \end{align*} $
respectively, where
$ N = -\Delta:{\mathscr D}(N) = \{\psi\in H^2(\Omega),\,\psi\,{\rm subject \,\,to \,\,the\,\, BC}\}\to \dot L^2(\Omega)\,\,{\rm or}\,\,L^2(\Omega). $
We assume that, for a given real number
Citation: |
[1] |
A. Bonfoh, Existence and continuity of inertial manifolds for the hyperbolic relaxation of the viscous Cahn-Hilliard equation, Appl. Math Optim., 84 (2021), 3339-3416.
doi: 10.1007/s00245-021-09749-9.![]() ![]() |
[2] |
A. Bonfoh, Dynamics of a conserved phase-field system, Appl. Anal., 95 (2016), 44-62.
doi: 10.1080/00036811.2014.997225.![]() ![]() ![]() |
[3] |
A. Bonfoh, The singular limit dynamics of the phase-field equations, Ann. Mat. Pura Appl., 190 (2011), 105-144.
doi: 10.1007/s10231-010-0141-6.![]() ![]() ![]() |
[4] |
A. Bonfoh and C. D. Enyi, The Cahn-Hilliard equation as limit of a conserved phase-field system, Asymptot. Anal., 101 (2017), 97-148.
doi: 10.3233/ASY-161395.![]() ![]() ![]() |
[5] |
A. Bonfoh, M. Grasselli and A. Miranville, Singularly perturbed 1D Cahn-Hilliard equation revisited, Nonlinear Differ. Equ. Appli., 17 (2010), 663-695.
doi: 10.1007/s00030-010-0075-0.![]() ![]() ![]() |
[6] |
V. Chepyzhov, A. Kostianko and S. Zelik, Inertial manifolds for the hyperbolic relaxation of semilinear parabolic equations, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 1115-1142.
doi: 10.3934/dcdsb.2019009.![]() ![]() ![]() |
[7] |
L. Cherfils, A. Miranville, S. Peng and W. Zhang, Higher-order generalized Cahn-Hilliard equations, Electron. J. Qual. Theory Differ. Equ., 9 (2017), 1-22.
doi: 10.14232/ejqtde.2017.1.9.![]() ![]() ![]() |
[8] |
L. Cherfils, A. Miranville and S. Peng, Higher-order models in phase separation, J. Appl. Anal. Comput., 7 (2017), 39-56.
doi: 10.11948/2017003.![]() ![]() ![]() |
[9] |
L. Cherfils, A. Miranville and S. Peng, Higher-order anisotropic models in phase separation, Adv. Nonlinear Anal., 8 (2019), 278-302.
doi: 10.1515/anona-2016-0137.![]() ![]() ![]() |
[10] |
J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, London Mathematical Society Lecture Note Series, 278. Cambridge University Press, Cambridge, 2000.
doi: 10.1017/CBO9780511526404.![]() ![]() ![]() |
[11] |
S.-N. Chow and K. Lu, Invariant manifolds for flow in Banach spaces, J. Diff. Eqns, 74 (1988), 285-317.
doi: 10.1016/0022-0396(88)90007-1.![]() ![]() ![]() |
[12] |
S.-N. Chow, K. Lu and G. R. Sell, Smoothness of inertial manifolds, J. Math. Anal. Appl., 169 (1992), 283-312.
doi: 10.1016/0022-247X(92)90115-T.![]() ![]() ![]() |
[13] |
I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Acta, Kharkov, 1999, in Russian; English translation: Acta, Kharkov, 2002; http://www.emis.de/monographs/Chueshov/.
![]() |
[14] |
A. Debussche, A singular perturbation of the Cahn-Hilliard equation, Asymptotic Anal., 4 (1991), 161-185.
doi: 10.3233/ASY-1991-4202.![]() ![]() ![]() |
[15] |
M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a singularly perturbed Cahn-Hilliard system, Math. Nachr., 272 (2004), 11-31.
doi: 10.1002/mana.200310186.![]() ![]() ![]() |
[16] |
C. M. Elliott and A. M. Stuart, Viscous Cahn-Hilliard equation. II. Analysis, J. Differential Equations, 128 (1996), 387-414.
doi: 10.1006/jdeq.1996.0101.![]() ![]() ![]() |
[17] |
C. Foias, G. R. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equations, J. Differential Equations, 73 (1988), 309-355.
doi: 10.1016/0022-0396(88)90110-6.![]() ![]() ![]() |
[18] |
S. Gatti, M. Grasselli, A. Miranville and V. Pata, On the hyperbolic relaxation of the one-dimensional Cahn-Hilliard equation, J. Math. Anal. Appl., 312 (2005), 230-247.
doi: 10.1016/j.jmaa.2005.03.029.![]() ![]() ![]() |
[19] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence, RI, 1988.
doi: 10.1090/surv/025.![]() ![]() ![]() |
[20] |
J. K. Hale and G. Raugel, Upper-semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Differential Equations, 73 (1988), 197-214.
doi: 10.1016/0022-0396(88)90104-0.![]() ![]() ![]() |
[21] |
D. B. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math. 840, Springer-Verlag, Berlin, Heidelberg, New York, 1981.
![]() ![]() |
[22] |
H. Komatsu, Fractional powers of operators, Pacific J. Math., 19 (1966), 285-346.
doi: 10.2140/pjm.1966.19.285.![]() ![]() ![]() |
[23] |
J. Mallet-Paret and G. R. Sell, Inertial manifolds for reaction-diffusion equations in higher space dimensions, J. Amer. Math. Soc., 1 (1988), 805-866.
doi: 10.1090/S0894-0347-1988-0943276-7.![]() ![]() ![]() |
[24] |
A. J. Milani and N. J. Koksch, An Introduction to Semiflows, , Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 134. Chapman & Hall/CRC, Boca Raton, FL, 2005.
![]() ![]() |
[25] |
X. Mora and J. Solà-Morales, The singular limit dynamics of semilinear damped wave equations, J. Differential Equations, 78 (1989), 262-307.
doi: 10.1016/0022-0396(89)90065-X.![]() ![]() ![]() |
[26] |
B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of a class of pattern formation equations, Comm. Partial Differential Equations, 14 (1989), 245-297.
doi: 10.1080/03605308908820597.![]() ![]() ![]() |
[27] |
L. E. Payne, G. Polya and H.F. Weinberger, On the ratio of consecutive eigenvalue, J. Math. and Phys., 35 (1956), 289-298.
doi: 10.1002/sapm1956351289.![]() ![]() ![]() |
[28] |
M. Prizzi and K. P. Rybakowski, On inertial manifolds for reaction-diffusion equations on genuinely high-dimensional thin domains, Studia Math., 154 (2003), 253-275.
doi: 10.4064/sm154-3-6.![]() ![]() ![]() |
[29] |
M. Prizzi, M. Rinaldi and K. P. Rybakowski, Curved thin domains and parabolic equations, Studia Math., 151 (2002), 109-140.
doi: 10.4064/sm151-2-2.![]() ![]() ![]() |
[30] |
I. Richards, On the gaps between numbers which are sums of two squares, Adv. in Math., 46 (1982), 1-2.
doi: 10.1016/0001-8708(82)90051-2.![]() ![]() ![]() |
[31] |
R. Rosa and R. Temam, Inertial manifolds and normal hyperbolicity, Acta Appl. Math., 45 (1996), 1-50.
doi: 10.1007/BF00047882.![]() ![]() ![]() |
[32] |
J. C. Robinson, Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the theory of global attractors, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2001.
![]() ![]() |
[33] |
A. Savostianov and S. Zelik, Global well-posedness and attractors for the hyperbolic Cahn-Hilliard-Oono equation in the whole space, Math. Models Methods Appl. Sci., 26 (2016), 1357-1384.
doi: 10.1142/S0218202516500329.![]() ![]() ![]() |
[34] |
A. Savostianov and S. Zelik, Finite dimensionality of the attractor for the hyperbolic Cahn-Hilliard-Oono equation in $\mathbb R^3$, Math. Methods Appl. Sci., 39 (2016), 1254-1267.
doi: 10.1002/mma.3569.![]() ![]() ![]() |
[35] |
G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, Berlin, Heidelberg, New York, 2002.
doi: 10.1007/978-1-4757-5037-9.![]() ![]() |
[36] |
D. Selcovic, Smoothness of the singular limit of inertial manifolds of singularly perturbed evolution equations, Nonlinear Anal., 28 (1997), 199-215.
doi: 10.1016/0362-546X(95)00139-M.![]() ![]() ![]() |
[37] |
R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2$^{nd}$ edition, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0645-3.![]() ![]() ![]() |
[38] |
J. Vukadinovic, Inertial manifolds for a Smoluchowski equation on the unit sphere, Comm. Math. Phys., 285 (2009), 975-990.
doi: 10.1007/s00220-008-0460-2.![]() ![]() ![]() |
[39] |
S. Zelik, Inertial manifolds and finite-dimensional reduction for dissipative PDEs, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 1245-1327.
doi: 10.1017/S0308210513000073.![]() ![]() ![]() |
[40] |
S. Zheng and A. Milani, Global attractors for singular perturbations of the Cahn-Hilliard equations, J. Differential Equations, 209 (2005), 101-139.
doi: 10.1016/j.jde.2004.08.026.![]() ![]() ![]() |
[41] |
S. Zheng and A. Milani, Exponential attractors and inertial manifolds for singular perturbations of the Cahn-Hilliard equations, Nonlinear Anal., 57 (2004), 843-877.
doi: 10.1016/j.na.2004.03.023.![]() ![]() ![]() |