doi: 10.3934/eect.2021049
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Sufficient conditions for the continuity of inertial manifolds for singularly perturbed problems

Department of Mathematics, King Fahd University of Petroleum and Minerals, P.O. Box 546, Dhahran 31261, Saudi Arabia

*Tel.:+966 138607263; fax:+966 138602340

Received  August 2021 Revised  June 2021 Early access September 2021

We consider a nonlinear evolution equation in the form
$ {{\rm{U}}_t} + {{\rm{A}}_\varepsilon }{\rm{U}} + {{\rm{N}}_\varepsilon }{{\rm{G}}_\varepsilon }({\rm{U}}) = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {{{\rm{E}}_\varepsilon }} \right)$
together with its singular limit problem as
$ \varepsilon\to 0 $
$ \begin{align*} U_t+{\rm A} U+ {\rm N}{\rm G}(U) = 0, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {{{\rm{E}} }} \right)\end{align*} $
where
$ \varepsilon\in (0,1] $
(possibly
$ \varepsilon = 0 $
),
$ {\rm A}_\varepsilon $
and
$ {\rm A} $
are linear closed (possibly) unbounded operators,
$ {\rm N}_\varepsilon $
and
$ {\rm N} $
are linear (possibly) unbounded operators,
$ {\rm G}_\varepsilon $
and
$ {\rm G} $
are nonlinear functions. We give sufficient conditions on
$ {\rm A}_\varepsilon, $
$ {\rm N}_\varepsilon $
and
$ {\rm G}_\varepsilon $
(and also
$ {\rm A} $
,
$ {\rm N} $
and
$ {\rm G} $
) that guarantee not only the existence of an inertial manifold of dimension independent of
$ \varepsilon $
for (Eε) on a Banach space
$ {\mathcal H} $
, but also the Hölder continuity, lower and upper semicontinuity at
$ \varepsilon = 0 $
of the intersection of the inertial manifold with a bounded absorbing set. Applications to higher order viscous Cahn-Hilliard-Oono equations, the hyperbolic type equations and the phase-field systems, subject to either Neumann or Dirichlet boundary conditions (BC) (in which case
$ \Omega\subset{\mathbb R}^d $
is a bounded domain with smooth boundary) or periodic BC (in which case
$ \Omega = \Pi_{i = 1}^d(0,L_i), $
$ L_i>0 $
),
$ d = 1,2\; {\rm or} \;3$
, are considered. These three classes of dissipative equations read
$ \begin{align*} \phi_{t}+N(\varepsilon \phi_t+N^{\alpha+1} \phi +N\phi + g(\phi))+\sigma\phi = 0,\quad\alpha\in\mathbb N, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {{{\rm{P}}_\varepsilon }} \right)\end{align*} $
$ \begin{align*} \varepsilon \phi_{tt}+\phi_{t}+N^\alpha(N \phi + g(\phi))+ \sigma\phi = 0,\quad\alpha = 0, 1,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {{{\rm{H}}_\varepsilon }} \right) \end{align*} $
and
$ \begin{align*} \left\{\begin{aligned} & \phi_{t}+N^\alpha (N \phi + g(\phi)-u)+\sigma\phi = 0,\\&\varepsilon u_t+\phi_t+N u = 0,\end{aligned}\right.\quad\alpha = 0, 1,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {{{\rm{S}}_\varepsilon }} \right) \end{align*} $
respectively, where
$ \sigma\ge 0 $
and the Laplace operator is defined as
$ N = -\Delta:{\mathscr D}(N) = \{\psi\in H^2(\Omega),\,\psi\,{\rm subject \,\,to \,\,the\,\, BC}\}\to \dot L^2(\Omega)\,\,{\rm or}\,\,L^2(\Omega). $
We assume that, for a given real number
$ {\frak c}_1>0, $
there exists a positive integer
$ n = n({\frak c}_1) $
such that
$ \lambda_{n+1}-\lambda_n>{\frak c}_1 $
, where
$ \{\lambda_k\}_{k\in\mathbb N^*} $
are the eigenvalues of
$ N $
. There exists a real number
$ {\mathscr M}>0 $
such that the nonlinear function
$ g: V_j\to V_j $
satisfies the conditions
$ \|g(\psi)\|_j\le {\mathscr M} $
and
$ \|g(\psi)-g(\varphi)\|_{V_j}\le {\mathscr M}\|\psi-\varphi\|_{V_j} $
,
$ \forall\psi,\varphi\in V_j $
, where
$ V_j = {\mathscr D}(N^{j/2}) $
,
$ j = 1 $
for Problems (Pε) and (Sε) and
$ j = 0, 2\alpha $
for Problem (Hε). We further require
$ g\in{\mathcal C}^1( V_j, V_j) $
,
$ \|g'(\psi)\varphi\|_j\le {\mathscr M}\|\varphi\|_j $
for Problems (Hε) and (Sε).
Citation: Ahmed Bonfoh. Sufficient conditions for the continuity of inertial manifolds for singularly perturbed problems. Evolution Equations & Control Theory, doi: 10.3934/eect.2021049
References:
[1]

A. Bonfoh, Existence and continuity of inertial manifolds for the hyperbolic relaxation of the viscous Cahn-Hilliard equation, Appl. Math Optim., 84 (2021), 3339-3416.  doi: 10.1007/s00245-021-09749-9.  Google Scholar

[2]

A. Bonfoh, Dynamics of a conserved phase-field system, Appl. Anal., 95 (2016), 44-62.  doi: 10.1080/00036811.2014.997225.  Google Scholar

[3]

A. Bonfoh, The singular limit dynamics of the phase-field equations, Ann. Mat. Pura Appl., 190 (2011), 105-144.  doi: 10.1007/s10231-010-0141-6.  Google Scholar

[4]

A. Bonfoh and C. D. Enyi, The Cahn-Hilliard equation as limit of a conserved phase-field system, Asymptot. Anal., 101 (2017), 97-148.  doi: 10.3233/ASY-161395.  Google Scholar

[5]

A. BonfohM. Grasselli and A. Miranville, Singularly perturbed 1D Cahn-Hilliard equation revisited, Nonlinear Differ. Equ. Appli., 17 (2010), 663-695.  doi: 10.1007/s00030-010-0075-0.  Google Scholar

[6]

V. ChepyzhovA. Kostianko and S. Zelik, Inertial manifolds for the hyperbolic relaxation of semilinear parabolic equations, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 1115-1142.  doi: 10.3934/dcdsb.2019009.  Google Scholar

[7]

L. CherfilsA. MiranvilleS. Peng and W. Zhang, Higher-order generalized Cahn-Hilliard equations, Electron. J. Qual. Theory Differ. Equ., 9 (2017), 1-22.  doi: 10.14232/ejqtde.2017.1.9.  Google Scholar

[8]

L. CherfilsA. Miranville and S. Peng, Higher-order models in phase separation, J. Appl. Anal. Comput., 7 (2017), 39-56.  doi: 10.11948/2017003.  Google Scholar

[9]

L. CherfilsA. Miranville and S. Peng, Higher-order anisotropic models in phase separation, Adv. Nonlinear Anal., 8 (2019), 278-302.  doi: 10.1515/anona-2016-0137.  Google Scholar

[10] J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, London Mathematical Society Lecture Note Series, 278. Cambridge University Press, Cambridge, 2000.  doi: 10.1017/CBO9780511526404.  Google Scholar
[11]

S.-N. Chow and K. Lu, Invariant manifolds for flow in Banach spaces, J. Diff. Eqns, 74 (1988), 285-317.  doi: 10.1016/0022-0396(88)90007-1.  Google Scholar

[12]

S.-N. ChowK. Lu and G. R. Sell, Smoothness of inertial manifolds, J. Math. Anal. Appl., 169 (1992), 283-312.  doi: 10.1016/0022-247X(92)90115-T.  Google Scholar

[13]

I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Acta, Kharkov, 1999, in Russian; English translation: Acta, Kharkov, 2002; http://www.emis.de/monographs/Chueshov/. Google Scholar

[14]

A. Debussche, A singular perturbation of the Cahn-Hilliard equation, Asymptotic Anal., 4 (1991), 161-185.  doi: 10.3233/ASY-1991-4202.  Google Scholar

[15]

M. EfendievA. Miranville and S. Zelik, Exponential attractors for a singularly perturbed Cahn-Hilliard system, Math. Nachr., 272 (2004), 11-31.  doi: 10.1002/mana.200310186.  Google Scholar

[16]

C. M. Elliott and A. M. Stuart, Viscous Cahn-Hilliard equation. II. Analysis, J. Differential Equations, 128 (1996), 387-414.  doi: 10.1006/jdeq.1996.0101.  Google Scholar

[17]

C. FoiasG. R. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equations, J. Differential Equations, 73 (1988), 309-355.  doi: 10.1016/0022-0396(88)90110-6.  Google Scholar

[18]

S. GattiM. GrasselliA. Miranville and V. Pata, On the hyperbolic relaxation of the one-dimensional Cahn-Hilliard equation, J. Math. Anal. Appl., 312 (2005), 230-247.  doi: 10.1016/j.jmaa.2005.03.029.  Google Scholar

[19]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence, RI, 1988. doi: 10.1090/surv/025.  Google Scholar

[20]

J. K. Hale and G. Raugel, Upper-semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Differential Equations, 73 (1988), 197-214.  doi: 10.1016/0022-0396(88)90104-0.  Google Scholar

[21]

D. B. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math. 840, Springer-Verlag, Berlin, Heidelberg, New York, 1981.  Google Scholar

[22]

H. Komatsu, Fractional powers of operators, Pacific J. Math., 19 (1966), 285-346.  doi: 10.2140/pjm.1966.19.285.  Google Scholar

[23]

J. Mallet-Paret and G. R. Sell, Inertial manifolds for reaction-diffusion equations in higher space dimensions, J. Amer. Math. Soc., 1 (1988), 805-866.  doi: 10.1090/S0894-0347-1988-0943276-7.  Google Scholar

[24]

A. J. Milani and N. J. Koksch, An Introduction to Semiflows, , Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 134. Chapman & Hall/CRC, Boca Raton, FL, 2005.  Google Scholar

[25]

X. Mora and J. Solà-Morales, The singular limit dynamics of semilinear damped wave equations, J. Differential Equations, 78 (1989), 262-307.  doi: 10.1016/0022-0396(89)90065-X.  Google Scholar

[26]

B. NicolaenkoB. Scheurer and R. Temam, Some global dynamical properties of a class of pattern formation equations, Comm. Partial Differential Equations, 14 (1989), 245-297.  doi: 10.1080/03605308908820597.  Google Scholar

[27]

L. E. PayneG. Polya and H.F. Weinberger, On the ratio of consecutive eigenvalue, J. Math. and Phys., 35 (1956), 289-298.  doi: 10.1002/sapm1956351289.  Google Scholar

[28]

M. Prizzi and K. P. Rybakowski, On inertial manifolds for reaction-diffusion equations on genuinely high-dimensional thin domains, Studia Math., 154 (2003), 253-275.  doi: 10.4064/sm154-3-6.  Google Scholar

[29]

M. PrizziM. Rinaldi and K. P. Rybakowski, Curved thin domains and parabolic equations, Studia Math., 151 (2002), 109-140.  doi: 10.4064/sm151-2-2.  Google Scholar

[30]

I. Richards, On the gaps between numbers which are sums of two squares, Adv. in Math., 46 (1982), 1-2.  doi: 10.1016/0001-8708(82)90051-2.  Google Scholar

[31]

R. Rosa and R. Temam, Inertial manifolds and normal hyperbolicity, Acta Appl. Math., 45 (1996), 1-50.  doi: 10.1007/BF00047882.  Google Scholar

[32] J. C. Robinson, Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the theory of global attractors, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2001.   Google Scholar
[33]

A. Savostianov and S. Zelik, Global well-posedness and attractors for the hyperbolic Cahn-Hilliard-Oono equation in the whole space, Math. Models Methods Appl. Sci., 26 (2016), 1357-1384.  doi: 10.1142/S0218202516500329.  Google Scholar

[34]

A. Savostianov and S. Zelik, Finite dimensionality of the attractor for the hyperbolic Cahn-Hilliard-Oono equation in $\mathbb R^3$, Math. Methods Appl. Sci., 39 (2016), 1254-1267.  doi: 10.1002/mma.3569.  Google Scholar

[35]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, Berlin, Heidelberg, New York, 2002. doi: 10.1007/978-1-4757-5037-9.  Google Scholar

[36]

D. Selcovic, Smoothness of the singular limit of inertial manifolds of singularly perturbed evolution equations, Nonlinear Anal., 28 (1997), 199-215.  doi: 10.1016/0362-546X(95)00139-M.  Google Scholar

[37]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2$^{nd}$ edition, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[38]

J. Vukadinovic, Inertial manifolds for a Smoluchowski equation on the unit sphere, Comm. Math. Phys., 285 (2009), 975-990.  doi: 10.1007/s00220-008-0460-2.  Google Scholar

[39]

S. Zelik, Inertial manifolds and finite-dimensional reduction for dissipative PDEs, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 1245-1327.  doi: 10.1017/S0308210513000073.  Google Scholar

[40]

S. Zheng and A. Milani, Global attractors for singular perturbations of the Cahn-Hilliard equations, J. Differential Equations, 209 (2005), 101-139.  doi: 10.1016/j.jde.2004.08.026.  Google Scholar

[41]

S. Zheng and A. Milani, Exponential attractors and inertial manifolds for singular perturbations of the Cahn-Hilliard equations, Nonlinear Anal., 57 (2004), 843-877.  doi: 10.1016/j.na.2004.03.023.  Google Scholar

show all references

References:
[1]

A. Bonfoh, Existence and continuity of inertial manifolds for the hyperbolic relaxation of the viscous Cahn-Hilliard equation, Appl. Math Optim., 84 (2021), 3339-3416.  doi: 10.1007/s00245-021-09749-9.  Google Scholar

[2]

A. Bonfoh, Dynamics of a conserved phase-field system, Appl. Anal., 95 (2016), 44-62.  doi: 10.1080/00036811.2014.997225.  Google Scholar

[3]

A. Bonfoh, The singular limit dynamics of the phase-field equations, Ann. Mat. Pura Appl., 190 (2011), 105-144.  doi: 10.1007/s10231-010-0141-6.  Google Scholar

[4]

A. Bonfoh and C. D. Enyi, The Cahn-Hilliard equation as limit of a conserved phase-field system, Asymptot. Anal., 101 (2017), 97-148.  doi: 10.3233/ASY-161395.  Google Scholar

[5]

A. BonfohM. Grasselli and A. Miranville, Singularly perturbed 1D Cahn-Hilliard equation revisited, Nonlinear Differ. Equ. Appli., 17 (2010), 663-695.  doi: 10.1007/s00030-010-0075-0.  Google Scholar

[6]

V. ChepyzhovA. Kostianko and S. Zelik, Inertial manifolds for the hyperbolic relaxation of semilinear parabolic equations, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 1115-1142.  doi: 10.3934/dcdsb.2019009.  Google Scholar

[7]

L. CherfilsA. MiranvilleS. Peng and W. Zhang, Higher-order generalized Cahn-Hilliard equations, Electron. J. Qual. Theory Differ. Equ., 9 (2017), 1-22.  doi: 10.14232/ejqtde.2017.1.9.  Google Scholar

[8]

L. CherfilsA. Miranville and S. Peng, Higher-order models in phase separation, J. Appl. Anal. Comput., 7 (2017), 39-56.  doi: 10.11948/2017003.  Google Scholar

[9]

L. CherfilsA. Miranville and S. Peng, Higher-order anisotropic models in phase separation, Adv. Nonlinear Anal., 8 (2019), 278-302.  doi: 10.1515/anona-2016-0137.  Google Scholar

[10] J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, London Mathematical Society Lecture Note Series, 278. Cambridge University Press, Cambridge, 2000.  doi: 10.1017/CBO9780511526404.  Google Scholar
[11]

S.-N. Chow and K. Lu, Invariant manifolds for flow in Banach spaces, J. Diff. Eqns, 74 (1988), 285-317.  doi: 10.1016/0022-0396(88)90007-1.  Google Scholar

[12]

S.-N. ChowK. Lu and G. R. Sell, Smoothness of inertial manifolds, J. Math. Anal. Appl., 169 (1992), 283-312.  doi: 10.1016/0022-247X(92)90115-T.  Google Scholar

[13]

I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Acta, Kharkov, 1999, in Russian; English translation: Acta, Kharkov, 2002; http://www.emis.de/monographs/Chueshov/. Google Scholar

[14]

A. Debussche, A singular perturbation of the Cahn-Hilliard equation, Asymptotic Anal., 4 (1991), 161-185.  doi: 10.3233/ASY-1991-4202.  Google Scholar

[15]

M. EfendievA. Miranville and S. Zelik, Exponential attractors for a singularly perturbed Cahn-Hilliard system, Math. Nachr., 272 (2004), 11-31.  doi: 10.1002/mana.200310186.  Google Scholar

[16]

C. M. Elliott and A. M. Stuart, Viscous Cahn-Hilliard equation. II. Analysis, J. Differential Equations, 128 (1996), 387-414.  doi: 10.1006/jdeq.1996.0101.  Google Scholar

[17]

C. FoiasG. R. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equations, J. Differential Equations, 73 (1988), 309-355.  doi: 10.1016/0022-0396(88)90110-6.  Google Scholar

[18]

S. GattiM. GrasselliA. Miranville and V. Pata, On the hyperbolic relaxation of the one-dimensional Cahn-Hilliard equation, J. Math. Anal. Appl., 312 (2005), 230-247.  doi: 10.1016/j.jmaa.2005.03.029.  Google Scholar

[19]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence, RI, 1988. doi: 10.1090/surv/025.  Google Scholar

[20]

J. K. Hale and G. Raugel, Upper-semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Differential Equations, 73 (1988), 197-214.  doi: 10.1016/0022-0396(88)90104-0.  Google Scholar

[21]

D. B. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math. 840, Springer-Verlag, Berlin, Heidelberg, New York, 1981.  Google Scholar

[22]

H. Komatsu, Fractional powers of operators, Pacific J. Math., 19 (1966), 285-346.  doi: 10.2140/pjm.1966.19.285.  Google Scholar

[23]

J. Mallet-Paret and G. R. Sell, Inertial manifolds for reaction-diffusion equations in higher space dimensions, J. Amer. Math. Soc., 1 (1988), 805-866.  doi: 10.1090/S0894-0347-1988-0943276-7.  Google Scholar

[24]

A. J. Milani and N. J. Koksch, An Introduction to Semiflows, , Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 134. Chapman & Hall/CRC, Boca Raton, FL, 2005.  Google Scholar

[25]

X. Mora and J. Solà-Morales, The singular limit dynamics of semilinear damped wave equations, J. Differential Equations, 78 (1989), 262-307.  doi: 10.1016/0022-0396(89)90065-X.  Google Scholar

[26]

B. NicolaenkoB. Scheurer and R. Temam, Some global dynamical properties of a class of pattern formation equations, Comm. Partial Differential Equations, 14 (1989), 245-297.  doi: 10.1080/03605308908820597.  Google Scholar

[27]

L. E. PayneG. Polya and H.F. Weinberger, On the ratio of consecutive eigenvalue, J. Math. and Phys., 35 (1956), 289-298.  doi: 10.1002/sapm1956351289.  Google Scholar

[28]

M. Prizzi and K. P. Rybakowski, On inertial manifolds for reaction-diffusion equations on genuinely high-dimensional thin domains, Studia Math., 154 (2003), 253-275.  doi: 10.4064/sm154-3-6.  Google Scholar

[29]

M. PrizziM. Rinaldi and K. P. Rybakowski, Curved thin domains and parabolic equations, Studia Math., 151 (2002), 109-140.  doi: 10.4064/sm151-2-2.  Google Scholar

[30]

I. Richards, On the gaps between numbers which are sums of two squares, Adv. in Math., 46 (1982), 1-2.  doi: 10.1016/0001-8708(82)90051-2.  Google Scholar

[31]

R. Rosa and R. Temam, Inertial manifolds and normal hyperbolicity, Acta Appl. Math., 45 (1996), 1-50.  doi: 10.1007/BF00047882.  Google Scholar

[32] J. C. Robinson, Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the theory of global attractors, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2001.   Google Scholar
[33]

A. Savostianov and S. Zelik, Global well-posedness and attractors for the hyperbolic Cahn-Hilliard-Oono equation in the whole space, Math. Models Methods Appl. Sci., 26 (2016), 1357-1384.  doi: 10.1142/S0218202516500329.  Google Scholar

[34]

A. Savostianov and S. Zelik, Finite dimensionality of the attractor for the hyperbolic Cahn-Hilliard-Oono equation in $\mathbb R^3$, Math. Methods Appl. Sci., 39 (2016), 1254-1267.  doi: 10.1002/mma.3569.  Google Scholar

[35]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, Berlin, Heidelberg, New York, 2002. doi: 10.1007/978-1-4757-5037-9.  Google Scholar

[36]

D. Selcovic, Smoothness of the singular limit of inertial manifolds of singularly perturbed evolution equations, Nonlinear Anal., 28 (1997), 199-215.  doi: 10.1016/0362-546X(95)00139-M.  Google Scholar

[37]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2$^{nd}$ edition, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[38]

J. Vukadinovic, Inertial manifolds for a Smoluchowski equation on the unit sphere, Comm. Math. Phys., 285 (2009), 975-990.  doi: 10.1007/s00220-008-0460-2.  Google Scholar

[39]

S. Zelik, Inertial manifolds and finite-dimensional reduction for dissipative PDEs, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 1245-1327.  doi: 10.1017/S0308210513000073.  Google Scholar

[40]

S. Zheng and A. Milani, Global attractors for singular perturbations of the Cahn-Hilliard equations, J. Differential Equations, 209 (2005), 101-139.  doi: 10.1016/j.jde.2004.08.026.  Google Scholar

[41]

S. Zheng and A. Milani, Exponential attractors and inertial manifolds for singular perturbations of the Cahn-Hilliard equations, Nonlinear Anal., 57 (2004), 843-877.  doi: 10.1016/j.na.2004.03.023.  Google Scholar

[1]

Monica Conti, Stefania Gatti, Alain Miranville. A singular cahn-hilliard-oono phase-field system with hereditary memory. Discrete & Continuous Dynamical Systems, 2018, 38 (6) : 3033-3054. doi: 10.3934/dcds.2018132

[2]

Irena Pawłow, Wojciech M. Zajączkowski. On a class of sixth order viscous Cahn-Hilliard type equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 517-546. doi: 10.3934/dcdss.2013.6.517

[3]

Anna Kostianko, Sergey Zelik. Inertial manifolds for the 3D Cahn-Hilliard equations with periodic boundary conditions. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2069-2094. doi: 10.3934/cpaa.2015.14.2069

[4]

Tian Ma, Shouhong Wang. Cahn-Hilliard equations and phase transition dynamics for binary systems. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 741-784. doi: 10.3934/dcdsb.2009.11.741

[5]

Fangshu Wan. Bôcher-type results for the fourth and higher order equations on singular manifolds with conical metrics. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2919-2948. doi: 10.3934/cpaa.2020128

[6]

Ciprian G. Gal, Maurizio Grasselli. Singular limit of viscous Cahn-Hilliard equations with memory and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1581-1610. doi: 10.3934/dcdsb.2013.18.1581

[7]

Pierluigi Colli, Gianni Gilardi, Danielle Hilhorst. On a Cahn-Hilliard type phase field system related to tumor growth. Discrete & Continuous Dynamical Systems, 2015, 35 (6) : 2423-2442. doi: 10.3934/dcds.2015.35.2423

[8]

Vladimir V. Chepyzhov, Anna Kostianko, Sergey Zelik. Inertial manifolds for the hyperbolic relaxation of semilinear parabolic equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1115-1142. doi: 10.3934/dcdsb.2019009

[9]

Alain Miranville. Existence of solutions for Cahn-Hilliard type equations. Conference Publications, 2003, 2003 (Special) : 630-637. doi: 10.3934/proc.2003.2003.630

[10]

Laurence Cherfils, Madalina Petcu. On the viscous Cahn-Hilliard-Navier-Stokes equations with dynamic boundary conditions. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1419-1449. doi: 10.3934/cpaa.2016.15.1419

[11]

Riccarda Rossi. On two classes of generalized viscous Cahn-Hilliard equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 405-430. doi: 10.3934/cpaa.2005.4.405

[12]

Alain Miranville, Wafa Saoud, Raafat Talhouk. On the Cahn-Hilliard/Allen-Cahn equations with singular potentials. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3633-3651. doi: 10.3934/dcdsb.2018308

[13]

Aibo Liu, Changchun Liu. Cauchy problem for a sixth order Cahn-Hilliard type equation with inertial term. Evolution Equations & Control Theory, 2015, 4 (3) : 315-324. doi: 10.3934/eect.2015.4.315

[14]

Zhenhua Zhang. Asymptotic behavior of solutions to the phase-field equations with neumann boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 683-693. doi: 10.3934/cpaa.2005.4.683

[15]

Andrea Signori. Optimal treatment for a phase field system of Cahn-Hilliard type modeling tumor growth by asymptotic scheme. Mathematical Control & Related Fields, 2020, 10 (2) : 305-331. doi: 10.3934/mcrf.2019040

[16]

Pierluigi Colli, Gianni Gilardi, Elisabetta Rocca, Jürgen Sprekels. Asymptotic analyses and error estimates for a Cahn-Hilliard type phase field system modelling tumor growth. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 37-54. doi: 10.3934/dcdss.2017002

[17]

Clesh Deseskel Elion Ekohela, Daniel Moukoko. On higher-order anisotropic perturbed Caginalp phase field systems. Electronic Research Announcements, 2019, 26: 36-53. doi: 10.3934/era.2019.26.004

[18]

Maurizio Grasselli, Giulio Schimperna. Nonlocal phase-field systems with general potentials. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5089-5106. doi: 10.3934/dcds.2013.33.5089

[19]

Nobuyuki Kenmochi, Jürgen Sprekels. Phase-field systems with vectorial order parameters including diffusional hysteresis effects. Communications on Pure & Applied Analysis, 2002, 1 (4) : 495-511. doi: 10.3934/cpaa.2002.1.495

[20]

G. Caginalp, Emre Esenturk. Anisotropic phase field equations of arbitrary order. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 311-350. doi: 10.3934/dcdss.2011.4.311

2020 Impact Factor: 1.081

Article outline

[Back to Top]