• Previous Article
    Solution stability to parametric distributed optimal control problems with finite unilateral constraints
  • EECT Home
  • This Issue
  • Next Article
    Optimal control problems governed by two dimensional convective Brinkman-Forchheimer equations
doi: 10.3934/eect.2021052
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Exponential stabilization of a linear Korteweg-de Vries equation with input saturation

1. 

Laboratory LIMA, Faculty of sciences, Chouaib Doukkali University, El-Jadida, Morocco

2. 

LIMA, Faculty of sciences, Chouaib Doukkali University, El-Jadida, Morocco

* Corresponding author: Ahmat Mahamat Taboye

Dedicated to Professor Mohammed Elarbi Achhab on the occasion of his retirement

Received  July 2021 Revised  August 2021 Early access September 2021

This article deals with the issue of the exponential stability of a linear Korteweg-de Vries equation with input saturation. It is proved that the system is well-posed and the origin is exponentially stable for the closed loop system, by using the classical argument used in this kind of problems.

Citation: Ahmat Mahamat Taboye, Mohamed Laabissi. Exponential stabilization of a linear Korteweg-de Vries equation with input saturation. Evolution Equations & Control Theory, doi: 10.3934/eect.2021052
References:
[1]

E. Cerpa, Control of a korteweg-de Vries equation: A tutorial, Math. Control Relat. Fields, 4 (2014), 45-99.  doi: 10.3934/mcrf.2014.4.45.  Google Scholar

[2]

E. Cerpa and J-M. Coron, Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition, IEEE Trans. Automat. Control, 58 (2013), 1688-1695.  doi: 10.1109/TAC.2013.2241479.  Google Scholar

[3]

J-M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, 136, American Mathematical Society, Providence, RI, 2007. doi: 10.1090/surv/136.  Google Scholar

[4]

R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics, 21. Springer-Verlag, New York, 1995.  Google Scholar

[5]

H. Hedenmalm, On the uniqueness theorem of Holmgren, Math. Z., 281 (2015), 357-378.  doi: 10.1007/s00209-015-1488-6.  Google Scholar

[6]

K. Ito and F. Kappel, Evolution Equations and Approximations, World Scientific, 2002.  Google Scholar

[7]

M. Laabissi and A. M. Taboye, Strong stabilization of non-dissipative operators in Hilbert spaces with input saturation, Math. Control Signals Systems, 33 (2021), 553-568.  doi: 10.1007/s00498-021-00291-1.  Google Scholar

[8]

I. Lasiecka and T. I. Seidman, Strong stability of elastic control systems with dissipative saturating feedback, Systems Control Lett., 48 (2003), 243-252.  doi: 10.1016/S0167-6911(02)00269-4.  Google Scholar

[9]

S. Marx and E. Cerpa, Output feedback control of the linear korteweg-de vries equation, IEEE Conference on Decision and Control, (2014), 2083–2087. Google Scholar

[10]

S. Marx, E. Cerpa, C. Prieur and V. Andrieu, Stabilization of a linear korteweg-de vries equation with a saturated internal control, In 2015 European Control Conference (ECC), IEEE, (2015), 867–872. Google Scholar

[11]

S. MarxE. CerpaC. Prieur and V. Andrieu, Global stabilization of a Korteweg–de Vries equation with saturating distributed control, SIAM J. Control Optim., 55 (2017), 1452-1480.  doi: 10.1137/16M1061837.  Google Scholar

[12]

G. P. MenzalaC. F. Vasconcellos and E. Zuazua, Stabilization of the Korteweg-de Vries equation with localized damping, Quart. Appl. Math., 60 (2002), 111-129.  doi: 10.1090/qam/1878262.  Google Scholar

[13]

I. Miyadera, Nonlinear Semigroups, American Mathematical Soc., 1992.  Google Scholar

[14]

A. F. Pazoto, Unique continuation and decay for the Korteweg-de Vries equation with localized damping, ESAIM Control Optim. Calc. Var., 11 (2005), 473-486.  doi: 10.1051/cocv:2005015.  Google Scholar

[15]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.  Google Scholar

[16]

L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var., 2 (1997), 33-55.  doi: 10.1051/cocv:1997102.  Google Scholar

[17]

L. Rosier and B-Y. Zhang, Global stabilization of the generalized Korteweg–de Vries equation posed on a finite domain, SIAM J. Control Optim., 45 (2006), 927-956.  doi: 10.1137/050631409.  Google Scholar

[18]

T. I. Seidman and H. Li, A note on stabilization with saturating feedback, Discrete Contin. Dynam. Systems, 7 (2001), 319-328.  doi: 10.3934/dcds.2001.7.319.  Google Scholar

[19]

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, American Mathematical Soc., Providence, RI, 1997.  Google Scholar

[20]

M. Slemrod, Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control, Math. Control Signals Systems, 2 (1989), 265-285.  doi: 10.1007/BF02551387.  Google Scholar

[21]

B.-Y. Zhang, Exact boundary controllability of the Korteweg–de Vries equation, SIAM J. Control Optim., 37 (1999), 543-565.  doi: 10.1137/S0363012997327501.  Google Scholar

show all references

References:
[1]

E. Cerpa, Control of a korteweg-de Vries equation: A tutorial, Math. Control Relat. Fields, 4 (2014), 45-99.  doi: 10.3934/mcrf.2014.4.45.  Google Scholar

[2]

E. Cerpa and J-M. Coron, Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition, IEEE Trans. Automat. Control, 58 (2013), 1688-1695.  doi: 10.1109/TAC.2013.2241479.  Google Scholar

[3]

J-M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, 136, American Mathematical Society, Providence, RI, 2007. doi: 10.1090/surv/136.  Google Scholar

[4]

R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics, 21. Springer-Verlag, New York, 1995.  Google Scholar

[5]

H. Hedenmalm, On the uniqueness theorem of Holmgren, Math. Z., 281 (2015), 357-378.  doi: 10.1007/s00209-015-1488-6.  Google Scholar

[6]

K. Ito and F. Kappel, Evolution Equations and Approximations, World Scientific, 2002.  Google Scholar

[7]

M. Laabissi and A. M. Taboye, Strong stabilization of non-dissipative operators in Hilbert spaces with input saturation, Math. Control Signals Systems, 33 (2021), 553-568.  doi: 10.1007/s00498-021-00291-1.  Google Scholar

[8]

I. Lasiecka and T. I. Seidman, Strong stability of elastic control systems with dissipative saturating feedback, Systems Control Lett., 48 (2003), 243-252.  doi: 10.1016/S0167-6911(02)00269-4.  Google Scholar

[9]

S. Marx and E. Cerpa, Output feedback control of the linear korteweg-de vries equation, IEEE Conference on Decision and Control, (2014), 2083–2087. Google Scholar

[10]

S. Marx, E. Cerpa, C. Prieur and V. Andrieu, Stabilization of a linear korteweg-de vries equation with a saturated internal control, In 2015 European Control Conference (ECC), IEEE, (2015), 867–872. Google Scholar

[11]

S. MarxE. CerpaC. Prieur and V. Andrieu, Global stabilization of a Korteweg–de Vries equation with saturating distributed control, SIAM J. Control Optim., 55 (2017), 1452-1480.  doi: 10.1137/16M1061837.  Google Scholar

[12]

G. P. MenzalaC. F. Vasconcellos and E. Zuazua, Stabilization of the Korteweg-de Vries equation with localized damping, Quart. Appl. Math., 60 (2002), 111-129.  doi: 10.1090/qam/1878262.  Google Scholar

[13]

I. Miyadera, Nonlinear Semigroups, American Mathematical Soc., 1992.  Google Scholar

[14]

A. F. Pazoto, Unique continuation and decay for the Korteweg-de Vries equation with localized damping, ESAIM Control Optim. Calc. Var., 11 (2005), 473-486.  doi: 10.1051/cocv:2005015.  Google Scholar

[15]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.  Google Scholar

[16]

L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var., 2 (1997), 33-55.  doi: 10.1051/cocv:1997102.  Google Scholar

[17]

L. Rosier and B-Y. Zhang, Global stabilization of the generalized Korteweg–de Vries equation posed on a finite domain, SIAM J. Control Optim., 45 (2006), 927-956.  doi: 10.1137/050631409.  Google Scholar

[18]

T. I. Seidman and H. Li, A note on stabilization with saturating feedback, Discrete Contin. Dynam. Systems, 7 (2001), 319-328.  doi: 10.3934/dcds.2001.7.319.  Google Scholar

[19]

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, American Mathematical Soc., Providence, RI, 1997.  Google Scholar

[20]

M. Slemrod, Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control, Math. Control Signals Systems, 2 (1989), 265-285.  doi: 10.1007/BF02551387.  Google Scholar

[21]

B.-Y. Zhang, Exact boundary controllability of the Korteweg–de Vries equation, SIAM J. Control Optim., 37 (1999), 543-565.  doi: 10.1137/S0363012997327501.  Google Scholar

[1]

Eduardo Cerpa, Emmanuelle Crépeau. Rapid exponential stabilization for a linear Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 655-668. doi: 10.3934/dcdsb.2009.11.655

[2]

Muhammad Usman, Bing-Yu Zhang. Forced oscillations of the Korteweg-de Vries equation on a bounded domain and their stability. Discrete & Continuous Dynamical Systems, 2010, 26 (4) : 1509-1523. doi: 10.3934/dcds.2010.26.1509

[3]

Eduardo Cerpa. Control of a Korteweg-de Vries equation: A tutorial. Mathematical Control & Related Fields, 2014, 4 (1) : 45-99. doi: 10.3934/mcrf.2014.4.45

[4]

M. Agrotis, S. Lafortune, P.G. Kevrekidis. On a discrete version of the Korteweg-De Vries equation. Conference Publications, 2005, 2005 (Special) : 22-29. doi: 10.3934/proc.2005.2005.22

[5]

Julie Valein. On the asymptotic stability of the Korteweg-de Vries equation with time-delayed internal feedback. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021039

[6]

Guolian Wang, Boling Guo. Stochastic Korteweg-de Vries equation driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5255-5272. doi: 10.3934/dcds.2015.35.5255

[7]

Pierre Garnier. Damping to prevent the blow-up of the korteweg-de vries equation. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1455-1470. doi: 10.3934/cpaa.2017069

[8]

Eduardo Cerpa, Emmanuelle Crépeau, Julie Valein. Boundary controllability of the Korteweg-de Vries equation on a tree-shaped network. Evolution Equations & Control Theory, 2020, 9 (3) : 673-692. doi: 10.3934/eect.2020028

[9]

Ludovick Gagnon. Qualitative description of the particle trajectories for the N-solitons solution of the Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1489-1507. doi: 10.3934/dcds.2017061

[10]

Arnaud Debussche, Jacques Printems. Convergence of a semi-discrete scheme for the stochastic Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 761-781. doi: 10.3934/dcdsb.2006.6.761

[11]

Roberto A. Capistrano-Filho, Shuming Sun, Bing-Yu Zhang. General boundary value problems of the Korteweg-de Vries equation on a bounded domain. Mathematical Control & Related Fields, 2018, 8 (3&4) : 583-605. doi: 10.3934/mcrf.2018024

[12]

Qifan Li. Local well-posedness for the periodic Korteweg-de Vries equation in analytic Gevrey classes. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1097-1109. doi: 10.3934/cpaa.2012.11.1097

[13]

Shou-Fu Tian. Initial-boundary value problems for the coupled modified Korteweg-de Vries equation on the interval. Communications on Pure & Applied Analysis, 2018, 17 (3) : 923-957. doi: 10.3934/cpaa.2018046

[14]

Anne de Bouard, Eric Gautier. Exit problems related to the persistence of solitons for the Korteweg-de Vries equation with small noise. Discrete & Continuous Dynamical Systems, 2010, 26 (3) : 857-871. doi: 10.3934/dcds.2010.26.857

[15]

John P. Albert. A uniqueness result for 2-soliton solutions of the Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems, 2019, 39 (7) : 3635-3670. doi: 10.3934/dcds.2019149

[16]

Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312

[17]

Mostafa Abounouh, Hassan Al-Moatassime, Sabah Kaouri. Non-standard boundary conditions for the linearized Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (8) : 2625-2654. doi: 10.3934/dcdss.2021066

[18]

Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control & Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61

[19]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Global stabilization of a coupled system of two generalized Korteweg-de Vries type equations posed on a finite domain. Mathematical Control & Related Fields, 2011, 1 (3) : 353-389. doi: 10.3934/mcrf.2011.1.353

[20]

Netra Khanal, Ramjee Sharma, Jiahong Wu, Juan-Ming Yuan. A dual-Petrov-Galerkin method for extended fifth-order Korteweg-de Vries type equations. Conference Publications, 2009, 2009 (Special) : 442-450. doi: 10.3934/proc.2009.2009.442

2020 Impact Factor: 1.081

Article outline

[Back to Top]