doi: 10.3934/eect.2021058
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Approximate controllability of neutral delay integro-differential inclusion of order $ \alpha\in (1, 2) $ with non-instantaneous impulses

1. 

Department of Mathematics & Computer Science, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam (A.P.)-515134, India

2. 

Department of Mathematics & Scientific Computing, National Institute of Technology, Hamirpur (H.P.)-177005, India

* Corresponding author: Avadhesh Kumar (soni.iitkgp@gmail.com)

Received  June 2021 Revised  September 2021 Early access November 2021

This paper aims to establish the approximate controllability results for fractional neutral integro-differential inclusions with non-instantaneous impulse and infinite delay. Sufficient conditions for approximate controllability have been established for the proposed control problem. The tools for study include the fixed point theorem for discontinuous multi-valued operators with the $ \alpha- $resolvent operator. Finally, the proposed results are illustrated with the help of an example.

Citation: Avadhesh Kumar, Ankit Kumar, Ramesh Kumar Vats, Parveen Kumar. Approximate controllability of neutral delay integro-differential inclusion of order $ \alpha\in (1, 2) $ with non-instantaneous impulses. Evolution Equations and Control Theory, doi: 10.3934/eect.2021058
References:
[1]

N. AbadaM. Benchohra and H. Hammouche, Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions, Journal of Differential Equations., 246 (2009), 3834-3863.  doi: 10.1016/j.jde.2009.03.004.

[2]

P. Balasubramaniam and P. Tamilalagan, Approximate controllability of a class of fractional neutral stochastic integro-differential inclusions with infinite delay by using Mainardis function, Applied Mathematics and Computation, 256 (2015), 232-246.  doi: 10.1016/j.amc.2015.01.035.

[3]

P. BalasubramaniamV. Vembarasan and T. Senthilkumar, Approximate controllability of impulsive fractional integro-differential systems with nonlocal conditions in Hilbert space, Numerical and Functional Analysis, Optimization, 35 (2014), 177-197.  doi: 10.1080/01630563.2013.811420.

[4]

M. Benchohra, J. Henderson and S. Ntouyas, Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation, vol. 2, New York, 2006. doi: 10.1155/9789775945501.

[5]

B. C. Dhage, Fixed-point theorems for discontinuous multi-valued operators on ordered spaces with applications, Comput. Math. Appl., 51 (2006), 589-604.  doi: 10.1016/j.camwa.2005.07.017.

[6]

X. Fu and K. Mei, Approximate controllability of semilinear partial functional differential systems, Journal of Dynamics Control Systems, 15 (2009), 425-443.  doi: 10.1007/s10883-009-9068-x.

[7]

M. GuoX. Xue and R. Li, Controllability of impulsive evolution inclusions with nonlocal conditions, Journal of Optimization Theory and Applications, 120 (2004), 355-374.  doi: 10.1023/B:JOTA.0000015688.53162.eb.

[8]

J. K. Hale and J. Kato, Phase spaces for retarded equations with infinite delay, Funkcial. Ekvac., 21 (1978), 11-41. 

[9]

E. Hern and D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Am. Math. Soc., 141 (2013), 1641-1649.  doi: 10.1090/S0002-9939-2012-11613-2.

[10]

E. HernándezA. Prokopczyk and L. Ladeira, A note on partial functional differential equations with state-dependent delay, Nonlinear Analysis: Real World Applications, 7 (2006), 510-519.  doi: 10.1016/j.nonrwa.2005.03.014.

[11]

A. Kumar, K. Jeet and R. K. Vats, Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space, Evolution Equation and Control Theory, 2021. doi: 10.3934/eect.2021016.

[12]

A. KumarM. Malik and R. Sakthivel, Controllability of the second order nonlinear differential equations with non-instantaneous impulses, J. Dynam. Control Systems, 24 (2018), 325-342.  doi: 10.1007/s10883-017-9376-5.

[13]

A. KumarR. K. Vats and A. Kumar, Approximate controllability of second-order non-autonomous system with finite delay, Journal of Dynamical and Control System, 26 (2020), 611-627.  doi: 10.1007/s10883-019-09475-0.

[14]

A. KumarR. K. VatsA. Kumar and D. N. Chalishajar, Numerical approach to the controllability of fractional order impulsive differential equations, Demonstratio Mathematica., 53 (2020), 193-207.  doi: 10.1515/dema-2020-0015.

[15]

P. KumarD. N. Pandey and D. Bahuguna, On a new class of abstract impulsive functional differential equations of fractional order, Journal of Nonlinear Science and Applications, 7 (2014), 102-114.  doi: 10.22436/jnsa.007.02.04.

[16]

S. Kumar and R. Sakthivel, Constrained controllability of second order retarded nonlinear systems with nonlocal condition, IMA Journal of Mathematical Control and Information, 37 (2020), 441-454.  doi: 10.1093/imamci/dnz007.

[17]

M. Li and M. Liu, Approximate controllability of semilinear neutral stochastic integro-differential inclusions with infinite delay, Discrete Dynamics in Nature and Society, 2015 (2015), Art. ID 420826, 16 pp. doi: 10.1155/2015/420826.

[18]

M. D. P. Monteiro Marques, Differential Inclusions in Nonsmooth Mechanical Problems, Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser Verlag, Basel, 1993. doi: 10.1007/978-3-0348-7614-8.

[19]

M. Muslim and A. Kumar, Trajectory controllability of fractional differential systems of order $\alpha \in (1, 2]$ with deviated argument, The Journal of Analysis, 28 (2020), 295-304.  doi: 10.1007/s41478-018-0081-x.

[20]

M. MuslimA. Kumar and M. Fečkan, Existence, uniqueness and stability of solutions to second order nonlinear differential equations with non-instantaneous impulses, Journal of King Saud University-Science, 30 (2018), 204-213.  doi: 10.1016/j.jksus.2016.11.005.

[21]

D. N. PandeyS. Das and N. Sukavanam, Existence of solution for a second-order neutral differential equation with state dependent delay and non-instantaneous impulses, International Journal of Nonlinear Science, 18 (2014), 145-155. 

[22]

C. RavichandranN. Valliammal and J. J. Nieto, New results on exact controllability of a class of fractional neutral integro-differential systems with state-dependent delay in Banach spaces, Journal of the Franklin Institute, 356 (2019), 1535-1565.  doi: 10.1016/j.jfranklin.2018.12.001.

[23]

R. SakthivelR. GaneshY. Ren and S. M. Anthoni, Approximate controllability of nonlinear fractional dynamical systems, Communications in Nonlinear Science and Numerical Simulation, 18 (2013), 3498-3508.  doi: 10.1016/j.cnsns.2013.05.015.

[24]

R. SakthivelN. I. Mahmudov and J. H. Kim, On controllability of second-order nonlinear impulsive differential systems, Nonlinear Analysis, Theory Methods & Applications, 71 (2009), 45-52.  doi: 10.1016/j.na.2008.10.029.

[25]

J. P. C. dos SantosM. M. Arjunan and C. Cuevas, Existence results for fractional neutral integro-differential equations with state-dependent delay, Computers and Mathematics with Applications, 62 (2011), 1275-1283.  doi: 10.1016/j.camwa.2011.03.048.

[26]

G. ShenR. SakthivelY. Ren and M. Li, Controllability and stability of fractional stochastic functional systems driven by Rosenblatt process, Collectanea Mathematica, 71 (2020), 63-82.  doi: 10.1007/s13348-019-00248-3.

[27]

Z. Yan, Approximate controllability of fractional neutral integro-differential inclusions with state-dependent delay in Hilbert spaces, IMA Journal of Mathematical Control and Information, 30 (2013), 443-462.  doi: 10.1093/imamci/dns033.

[28]

Z. Yan, On a nonlocal problem for fractional integrodifferential inclusions in Banach spaces, Annales Polonici Mathematici, 101 (2011), 87-103.  doi: 10.4064/ap101-1-9.

[29]

Z. Yan, Controllability of fractional-order partial neutral functional integrodifferential inclusions with infinite delay, Journal of the Franklin Institute, 348 (2011), 2156-2173.  doi: 10.1016/j.jfranklin.2011.06.009.

show all references

References:
[1]

N. AbadaM. Benchohra and H. Hammouche, Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions, Journal of Differential Equations., 246 (2009), 3834-3863.  doi: 10.1016/j.jde.2009.03.004.

[2]

P. Balasubramaniam and P. Tamilalagan, Approximate controllability of a class of fractional neutral stochastic integro-differential inclusions with infinite delay by using Mainardis function, Applied Mathematics and Computation, 256 (2015), 232-246.  doi: 10.1016/j.amc.2015.01.035.

[3]

P. BalasubramaniamV. Vembarasan and T. Senthilkumar, Approximate controllability of impulsive fractional integro-differential systems with nonlocal conditions in Hilbert space, Numerical and Functional Analysis, Optimization, 35 (2014), 177-197.  doi: 10.1080/01630563.2013.811420.

[4]

M. Benchohra, J. Henderson and S. Ntouyas, Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation, vol. 2, New York, 2006. doi: 10.1155/9789775945501.

[5]

B. C. Dhage, Fixed-point theorems for discontinuous multi-valued operators on ordered spaces with applications, Comput. Math. Appl., 51 (2006), 589-604.  doi: 10.1016/j.camwa.2005.07.017.

[6]

X. Fu and K. Mei, Approximate controllability of semilinear partial functional differential systems, Journal of Dynamics Control Systems, 15 (2009), 425-443.  doi: 10.1007/s10883-009-9068-x.

[7]

M. GuoX. Xue and R. Li, Controllability of impulsive evolution inclusions with nonlocal conditions, Journal of Optimization Theory and Applications, 120 (2004), 355-374.  doi: 10.1023/B:JOTA.0000015688.53162.eb.

[8]

J. K. Hale and J. Kato, Phase spaces for retarded equations with infinite delay, Funkcial. Ekvac., 21 (1978), 11-41. 

[9]

E. Hern and D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Am. Math. Soc., 141 (2013), 1641-1649.  doi: 10.1090/S0002-9939-2012-11613-2.

[10]

E. HernándezA. Prokopczyk and L. Ladeira, A note on partial functional differential equations with state-dependent delay, Nonlinear Analysis: Real World Applications, 7 (2006), 510-519.  doi: 10.1016/j.nonrwa.2005.03.014.

[11]

A. Kumar, K. Jeet and R. K. Vats, Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space, Evolution Equation and Control Theory, 2021. doi: 10.3934/eect.2021016.

[12]

A. KumarM. Malik and R. Sakthivel, Controllability of the second order nonlinear differential equations with non-instantaneous impulses, J. Dynam. Control Systems, 24 (2018), 325-342.  doi: 10.1007/s10883-017-9376-5.

[13]

A. KumarR. K. Vats and A. Kumar, Approximate controllability of second-order non-autonomous system with finite delay, Journal of Dynamical and Control System, 26 (2020), 611-627.  doi: 10.1007/s10883-019-09475-0.

[14]

A. KumarR. K. VatsA. Kumar and D. N. Chalishajar, Numerical approach to the controllability of fractional order impulsive differential equations, Demonstratio Mathematica., 53 (2020), 193-207.  doi: 10.1515/dema-2020-0015.

[15]

P. KumarD. N. Pandey and D. Bahuguna, On a new class of abstract impulsive functional differential equations of fractional order, Journal of Nonlinear Science and Applications, 7 (2014), 102-114.  doi: 10.22436/jnsa.007.02.04.

[16]

S. Kumar and R. Sakthivel, Constrained controllability of second order retarded nonlinear systems with nonlocal condition, IMA Journal of Mathematical Control and Information, 37 (2020), 441-454.  doi: 10.1093/imamci/dnz007.

[17]

M. Li and M. Liu, Approximate controllability of semilinear neutral stochastic integro-differential inclusions with infinite delay, Discrete Dynamics in Nature and Society, 2015 (2015), Art. ID 420826, 16 pp. doi: 10.1155/2015/420826.

[18]

M. D. P. Monteiro Marques, Differential Inclusions in Nonsmooth Mechanical Problems, Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser Verlag, Basel, 1993. doi: 10.1007/978-3-0348-7614-8.

[19]

M. Muslim and A. Kumar, Trajectory controllability of fractional differential systems of order $\alpha \in (1, 2]$ with deviated argument, The Journal of Analysis, 28 (2020), 295-304.  doi: 10.1007/s41478-018-0081-x.

[20]

M. MuslimA. Kumar and M. Fečkan, Existence, uniqueness and stability of solutions to second order nonlinear differential equations with non-instantaneous impulses, Journal of King Saud University-Science, 30 (2018), 204-213.  doi: 10.1016/j.jksus.2016.11.005.

[21]

D. N. PandeyS. Das and N. Sukavanam, Existence of solution for a second-order neutral differential equation with state dependent delay and non-instantaneous impulses, International Journal of Nonlinear Science, 18 (2014), 145-155. 

[22]

C. RavichandranN. Valliammal and J. J. Nieto, New results on exact controllability of a class of fractional neutral integro-differential systems with state-dependent delay in Banach spaces, Journal of the Franklin Institute, 356 (2019), 1535-1565.  doi: 10.1016/j.jfranklin.2018.12.001.

[23]

R. SakthivelR. GaneshY. Ren and S. M. Anthoni, Approximate controllability of nonlinear fractional dynamical systems, Communications in Nonlinear Science and Numerical Simulation, 18 (2013), 3498-3508.  doi: 10.1016/j.cnsns.2013.05.015.

[24]

R. SakthivelN. I. Mahmudov and J. H. Kim, On controllability of second-order nonlinear impulsive differential systems, Nonlinear Analysis, Theory Methods & Applications, 71 (2009), 45-52.  doi: 10.1016/j.na.2008.10.029.

[25]

J. P. C. dos SantosM. M. Arjunan and C. Cuevas, Existence results for fractional neutral integro-differential equations with state-dependent delay, Computers and Mathematics with Applications, 62 (2011), 1275-1283.  doi: 10.1016/j.camwa.2011.03.048.

[26]

G. ShenR. SakthivelY. Ren and M. Li, Controllability and stability of fractional stochastic functional systems driven by Rosenblatt process, Collectanea Mathematica, 71 (2020), 63-82.  doi: 10.1007/s13348-019-00248-3.

[27]

Z. Yan, Approximate controllability of fractional neutral integro-differential inclusions with state-dependent delay in Hilbert spaces, IMA Journal of Mathematical Control and Information, 30 (2013), 443-462.  doi: 10.1093/imamci/dns033.

[28]

Z. Yan, On a nonlocal problem for fractional integrodifferential inclusions in Banach spaces, Annales Polonici Mathematici, 101 (2011), 87-103.  doi: 10.4064/ap101-1-9.

[29]

Z. Yan, Controllability of fractional-order partial neutral functional integrodifferential inclusions with infinite delay, Journal of the Franklin Institute, 348 (2011), 2156-2173.  doi: 10.1016/j.jfranklin.2011.06.009.

[1]

Baskar Sundaravadivoo. Controllability analysis of nonlinear fractional order differential systems with state delay and non-instantaneous impulsive effects. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2561-2573. doi: 10.3934/dcdss.2020138

[2]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations and Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[3]

Ahmed Boudaoui, Tomás Caraballo, Abdelghani Ouahab. Stochastic differential equations with non-instantaneous impulses driven by a fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2521-2541. doi: 10.3934/dcdsb.2017084

[4]

Liang Bai, Juan J. Nieto, José M. Uzal. On a delayed epidemic model with non-instantaneous impulses. Communications on Pure and Applied Analysis, 2020, 19 (4) : 1915-1930. doi: 10.3934/cpaa.2020084

[5]

Yinuo Wang, Chuandong Li, Hongjuan Wu, Hao Deng. Existence of solutions for fractional instantaneous and non-instantaneous impulsive differential equations with perturbation and Dirichlet boundary value. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1767-1776. doi: 10.3934/dcdss.2022005

[6]

Yong-Kui Chang, Xiaojing Liu. Time-varying integro-differential inclusions with Clarke sub-differential and non-local initial conditions: existence and approximate controllability. Evolution Equations and Control Theory, 2020, 9 (3) : 845-863. doi: 10.3934/eect.2020036

[7]

Muslim Malik, Anjali Rose, Anil Kumar. Controllability of Sobolev type fuzzy differential equation with non-instantaneous impulsive condition. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 387-407. doi: 10.3934/dcdss.2021068

[8]

Kasthurisamy Jothimani, Kalimuthu Kaliraj, Sumati Kumari Panda, Kotakkaran Sooppy Nisar, Chokkalingam Ravichandran. Results on controllability of non-densely characterized neutral fractional delay differential system. Evolution Equations and Control Theory, 2021, 10 (3) : 619-631. doi: 10.3934/eect.2020083

[9]

Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 115-135. doi: 10.3934/dcds.2011.30.115

[10]

Tomás Caraballo, Carlos Ogouyandjou, Fulbert Kuessi Allognissode, Mamadou Abdoul Diop. Existence and exponential stability for neutral stochastic integro–differential equations with impulses driven by a Rosenblatt process. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 507-528. doi: 10.3934/dcdsb.2019251

[11]

Xuan-Xuan Xi, Mimi Hou, Xian-Feng Zhou, Yanhua Wen. Approximate controllability of fractional neutral evolution systems of hyperbolic type. Evolution Equations and Control Theory, 2022, 11 (4) : 1037-1069. doi: 10.3934/eect.2021035

[12]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations and Control Theory, 2022, 11 (1) : 177-197. doi: 10.3934/eect.2020107

[13]

Brahim Boufoussi, Soufiane Mouchtabih. Controllability of neutral stochastic functional integro-differential equations driven by fractional brownian motion with Hurst parameter lesser than $ 1/2 $. Evolution Equations and Control Theory, 2021, 10 (4) : 921-935. doi: 10.3934/eect.2020096

[14]

Yejuan Wang, Tongtong Liang. Mild solutions to the time fractional Navier-Stokes delay differential inclusions. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3713-3740. doi: 10.3934/dcdsb.2018312

[15]

Eduardo Hernández, Donal O'Regan. $C^{\alpha}$-Hölder classical solutions for non-autonomous neutral differential equations. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 241-260. doi: 10.3934/dcds.2011.29.241

[16]

Irene Benedetti, Valeri Obukhovskii, Valentina Taddei. Evolution fractional differential problems with impulses and nonlocal conditions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 1899-1919. doi: 10.3934/dcdss.2020149

[17]

Daliang Zhao, Yansheng Liu, Xiaodi Li. Controllability for a class of semilinear fractional evolution systems via resolvent operators. Communications on Pure and Applied Analysis, 2019, 18 (1) : 455-478. doi: 10.3934/cpaa.2019023

[18]

Wen Deng. Resolvent estimates for a two-dimensional non-self-adjoint operator. Communications on Pure and Applied Analysis, 2013, 12 (1) : 547-596. doi: 10.3934/cpaa.2013.12.547

[19]

Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations and Control Theory, 2022, 11 (2) : 605-619. doi: 10.3934/eect.2021016

[20]

Xianlong Fu. Approximate controllability of semilinear non-autonomous evolution systems with state-dependent delay. Evolution Equations and Control Theory, 2017, 6 (4) : 517-534. doi: 10.3934/eect.2017026

2021 Impact Factor: 1.169

Article outline

[Back to Top]