In this article, we study the stability in the inverse problem of determining the time-dependent convection term and density coefficient appearing in the convection-diffusion equation, from partial boundary measurements. For dimension $ n\ge 2 $, we show the convection term (modulo the gauge term) admits log-log stability, whereas log-log-log stability estimate is obtained for the density coefficient.
Citation: |
[1] |
S. A. Avdonin and M. I. Belishev, Dynamical inverse problem for the Schrödinger equation (BC-method), Proceedings of the St. Petersburg Mathematical Society, Amer. Math. Soc. Transl. Ser. Vol. X, 214 (2005), 1-14.
doi: 10.1090/trans2/214/01.![]() ![]() ![]() |
[2] |
S. A. Avdonin and T. I. Seidman, Identication of $q(x)$ in $u_t = \Delta u - qu$, from boundary observations, SIAM J. Control Optim., 33 (1995), 1247-1255.
doi: 10.1137/S0363012993249729.![]() ![]() ![]() |
[3] |
L. Baudouin and J.-P. Puel, Uniqueness and stability in an inverse problem for the Schrödinger equation, Inverse Problems, 23 (2007), 1327-1328.
doi: 10.1088/0266-5611/23/3/C01.![]() ![]() ![]() |
[4] |
M. I. Belishev, Recent progress in the boundary control method, Inverse Problems, 23 (2007), R1–R67.
doi: 10.1088/0266-5611/23/5/R01.![]() ![]() ![]() |
[5] |
M. Bellassoued and I. Ben Aïcha, Stable determination outside a cloaking region of two time-dependent coefficients in an hyperbolic equation from Dirichlet to Neumann map, J. Math. Anal. Appl., 449 (2017), 46-76.
doi: 10.1016/j.jmaa.2016.11.082.![]() ![]() ![]() |
[6] |
M. Bellassoued and O. Ben Fraj, Stably determining time-dependent convection-diffusion coefficients from a partial Dirichlet-to-Neumann map, Inverse Problems, 37 (2021), 045011, 35pp.
doi: 10.1088/1361-6420/abe10d.![]() ![]() ![]() |
[7] |
M. Bellassoued and D. Dos Santos Ferreira, Stable determination of coefficients in the dynamical anisotropic Schrödinger equation from the Dirichlet-to-Neumann map, Inverse Problems, 26 (2010), 125010, 30pp.
doi: 10.1088/0266-5611/26/12/125010.![]() ![]() ![]() |
[8] |
M. Bellassoued, D. Jellali and M. Yamamoto, Lipschitz stability for a hyperbolic inverse problem by finite local boundary data, Appl. Anal., 85 (2006), 1219-1243.
doi: 10.1080/00036810600787873.![]() ![]() ![]() |
[9] |
M. Bellassoued, D. Jellali and M. Yamamoto, Stability estimate for the hyperbolic inverse boundary value problem by local Dirichlet-to-Neumann map, J. Math. Anal. Appl., 343 (2008), 1036-1046.
doi: 10.1016/j.jmaa.2008.01.098.![]() ![]() ![]() |
[10] |
M. Bellassoued, Y. Kian and E. Soccorsi, An inverse stability result for non-compactly supported potentials by one arbitrary lateral Neumann observation, J. Differential Equations, 260 (2016), 7535-7562.
doi: 10.1016/j.jde.2016.01.033.![]() ![]() ![]() |
[11] |
M. Bellassoued, Y. Kian and E. Soccorsi, An inverse problem for the magnetic Schrödinger equation in infinite cylindrical domains, Publ. Res. Inst. Math. Sci., 54 (2018), 679-728.
doi: 10.4171/PRIMS/54-4-1.![]() ![]() ![]() |
[12] |
M. Bellassoued and I. Rassas, Stability estimate for an inverse problem of the convection-diffusion equation, J. Inverse Ill-Posed Probl., 28 (2020), 71-92.
doi: 10.1515/jiip-2018-0072.![]() ![]() ![]() |
[13] |
I. Ben Aïcha, Stability estimate for a hyperbolic inverse problem with time-dependent coefficient, Inverse Problems, 31 (2015), 125010, 21pp.
doi: 10.1088/0266-5611/31/12/125010.![]() ![]() ![]() |
[14] |
I. Ben Aïcha, Stability estimate for an inverse problem for the Schrödinger equation in a magnetic field with time-dependent coefficient, J. Math. Phys., 58 (2017), 071508, 21pp.
doi: 10.1063/1.4995606.![]() ![]() ![]() |
[15] |
A. L. Bukhgeĭm and M. V. Klibanov, Uniqueness in the large class of a class of multidimensional inverse problems, Dokl. Akad. Nauk SSSR, 260 (1981), 269–272.
![]() ![]() |
[16] |
A. L. Bukhge${{\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}}$m and G. Uhlmann, Recovering a potential from partial Cauchy data, Comm. Partial Differential Equations, 27 (2002), 653-668.
doi: 10.1081/PDE-120002868.![]() ![]() ![]() |
[17] |
P. Caro and Y. Kian, Determination of convection terms and quasi-linearities appearing in diffusion equations, preprint, arXiv: 1812.08495.
![]() |
[18] |
J. Cheng and M. Yamamoto, The global uniqueness for determining two convection coefficients from Dirichlet to Neumann map in two dimensions, Inverse Problems, 16 (2000), L25–L30.
doi: 10.1088/0266-5611/16/3/101.![]() ![]() ![]() |
[19] |
J. Cheng and M. Yamamoto, Identification of convection term in a parabolic equation with a single measurement, Nonlinear Anal., 50 (2002), 163-171.
doi: 10.1016/S0362-546X(01)00742-8.![]() ![]() ![]() |
[20] |
J. Cheng and M. Yamamoto, Determination of Two Convection Coefficients from Dirichlet to Neumann Map in the Two-Dimensional Case, SIAM J. Math. Anal., 35 (2004), 1371-1393.
doi: 10.1137/S0036141003422497.![]() ![]() ![]() |
[21] |
M. Choulli, An abstract inverse problem, J. Appl. Math. Stoc. Ana., 4 (1991), 117-128.
doi: 10.1155/S1048953391000084.![]() ![]() ![]() |
[22] |
M. Choulli, An abstract inverse problem and application, J. Math. Anal. Appl., 160 (1991), 190-202.
doi: 10.1016/0022-247X(91)90299-F.![]() ![]() ![]() |
[23] |
M. Choulli, Une Introduction Aux problèmes Inverses Elliptiques et Paraboliques, , Mathématiques & Applications, 65. Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-642-02460-3.![]() ![]() ![]() |
[24] |
M. Choulli and Y. Kian, Stability of the determination of a time-dependent coefficient in parabolic equations, Math. Control Relat. Fields, 3 (2013), 143-160.
doi: 10.3934/mcrf.2013.3.143.![]() ![]() ![]() |
[25] |
M. Choulli and Y. Kian, Logarithmic stability in determining the time-dependent zero order coefficient in a parabolic equation from a partial Dirichlet-to-Neumann map. Application to the determination of a nonlinear term, J. Math. Pures Appl., 114 (2018), 235-261.
doi: 10.1016/j.matpur.2017.12.003.![]() ![]() ![]() |
[26] |
M. Choulli, Y. Kian and E. Soccorsi, Stable determination of time-dependent scalar potential from boundary measurements in a periodic quantum waveguide, SIAM J. Math. Anal., 47 (2015), 4536-4558.
doi: 10.1137/140986268.![]() ![]() ![]() |
[27] |
Z.-C. Deng, J.-N. Yu and Y. Liu, Identifying the coefficient of first-order in parabolic equation from final measurement data, Math. Comput. Simulation, 77 (2008), 421-435.
doi: 10.1016/j.matcom.2008.01.002.![]() ![]() ![]() |
[28] |
D. Dos Santos Ferreira, C. E. Kenig, J. Sjöstrand and G. Uhlmann, Determining a magnetic Schrödinger operator from partial {C}auchy data, Comm. Math. Phys., 271 (2007), 467-488.
doi: 10.1007/s00220-006-0151-9.![]() ![]() ![]() |
[29] |
G. Eskin, Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect, J. Math. Phys., 49 (2008), 022105, 18pp.
doi: 10.1063/1.2841329.![]() ![]() ![]() |
[30] |
P. Gaitan and Y. Kian, A stability result for a time-dependent potential in a cylindrical domain, Inverse Problems, 29 (2013), 065006, 18pp.
doi: 10.1088/0266-5611/29/6/065006.![]() ![]() ![]() |
[31] |
G. Hu and Y. Kian, Determination of singular time-dependent coefficients for wave equations from full and partial data, Inverse Probl. Imaging, 12 (2018), 745-772.
doi: 10.3934/ipi.2018032.![]() ![]() ![]() |
[32] |
V. Isakov, Completeness of products of solutions and some inverse problems for PDE, J. Differential Equations, 92 (1991), 305-316.
doi: 10.1016/0022-0396(91)90051-A.![]() ![]() ![]() |
[33] |
V. Isakov, On uniqueness in inverse problems for semilinear parabolic equations, Arch. Rational Mech. Anal., 124 (1993), 1-12.
doi: 10.1007/BF00392201.![]() ![]() ![]() |
[34] |
V. Isakov, Inverse Problems for Partial Differential Equations, Applied Mathematical Sciences, 127. Springer-Verlag, New York, 1998.
![]() ![]() |
[35] |
A. Katchalov, Y. Kurylev and M. Lassas, Inverse Boundary Spectral Problems, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 123, Chapman & Hall/CRC, Boca Raton, FL, 2001.
![]() ![]() |
[36] |
Y. Kian, Stability of the determination of a coefficient for wave equations in an infinite waveguide, Inverse Probl. Imaging, 8 (2014), 713-732.
doi: 10.3934/ipi.2014.8.713.![]() ![]() ![]() |
[37] |
Y. Kian, Stability in the determination of a time-dependent coefficient for wave equations from partial data, J. Math. Anal. Appl., 436 (2016), 408–428.
doi: 10.1016/j.jmaa.2015.12.018.![]() ![]() ![]() |
[38] |
Y. Kian, Recovery of time-dependent damping coefficients and potentials appearing in wave equations from partial data, SIAM J. Math. Anal., 48 (2016), 4021–4046.
doi: 10.1137/16M1076708.![]() ![]() ![]() |
[39] |
Y. Kian, Unique determination of a time-dependent potential for wave equations from partial data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 973–990.
doi: 10.1016/j.anihpc.2016.07.003.![]() ![]() ![]() |
[40] |
Y. Kian and L. Oksanen, Recovery of time-dependent coefficient on Riemanian manifold for hyperbolic equations, Int. Math. Res. Not. IMRN, 2019 (2019), 5087-5126.
doi: 10.1093/imrn/rnx263.![]() ![]() ![]() |
[41] |
Y. Kian, Q. Sang Phan and E. Soccorsi, A Carleman estimate for infinite cyclindrical quantum domains and the application to inverse problems, Inverse Problems, 30 (2014), 055016, 16 pp.
doi: 10.1088/0266-5611/30/5/055016.![]() ![]() ![]() |
[42] |
Y. Kian, Q. Sang Phan and E. Soccorsi, Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains, J. Math. Anal. Appl., 426 (2015), 194–210.
doi: 10.1016/j.jmaa.2015.01.028.![]() ![]() ![]() |
[43] |
Y. Kian and E. Soccorsi, Hölder stably determining the time-dependent electromagnetic potential of the Schrödinger equation, SIAM J. Math. Anal., 51 (2019), 627-647.
doi: 10.1137/18M1197308.![]() ![]() ![]() |
[44] |
Y. Kian and A. Tetlow, Hölder stable recovery of time-dependent electromagnetic potentials appearing in a dynamical anisotropic schrödinger equation, Inverse Probl. Imaging, 14 (2020), 819-839.
doi: 10.3934/ipi.2020038.![]() ![]() ![]() |
[45] |
Y. Kian and M. Yamamoto, Reconstruction and stable recovery of source terms and coefficients appearing in diffusion equations, Inverse Problems, 35 (2019), 115006, 24pp
doi: 10.1088/1361-6420/ab2d42.![]() ![]() ![]() |
[46] |
V. P. Krishnan and M. Vashisth, An inverse problem for the relativistic Schrödinger equation with partial boundary data, Appl. Anal., 99 (2020), 1889-1909.
doi: 10.1080/00036811.2018.1549321.![]() ![]() ![]() |
[47] |
J.-L. Lions and E. Magenes, Problèmes Aux Limites Non Homogènes et Applications, Vol. 3. (French) Travaux et Recherches Mathématiques, Dunod, Paris, 1970.
![]() ![]() |
[48] |
R. K. Mishra and M. Vashisth, Determining the Time Dependent Matrix Potential in A Wave Equation From Partial Boundary Data, Appl. Anal., 100 (2021), 3492-3508.
doi: 10.1080/00036811.2020.1721476.![]() ![]() |
[49] |
N. S. Nadirašvili, A generalization of Hadamard's three circles theorem, (Russian) Vestnik Moskov. Univ. Ser. I Mat. Meh., 31 (1976), 39-42.
![]() ![]() |
[50] |
G. Nakamura and S. Sasayama, Inverse boundary value problem for the heat equation with discontinuous coefficients, J. Inverse Ill-Posed Probl., 21 (2013), 217-232.
doi: 10.1515/jip-2012-0073.![]() ![]() ![]() |
[51] |
V. Pohjola, A uniqueness result for an inverse problem of the steady state convection-diffusion equation, SIAM J. Math. Anal., 47 (2015), 2084-2103.
doi: 10.1137/140970926.![]() ![]() ![]() |
[52] |
Ra kesh and W. W. Symes, Uniqueness for an inverse problem for the wave equation, Comm. Partial Differential Equations, 13 (1988), 87-96.
doi: 10.1080/03605308808820539.![]() ![]() ![]() |
[53] |
S. K. Sahoo and M. Vashisth, A partial data inverse problem for Convection-Diffusion equation, Inverse Probl. Imaging, 14 (2020), 53-75.
doi: 10.3934/ipi.2019063.![]() ![]() ![]() |
[54] |
R. Salazar, Determination of time-dependent coefficients for a hyperbolic inverse problem, Inverse Problems, 29 (2013), 095015, 17pp.
doi: 10.1088/0266-5611/29/9/095015.![]() ![]() ![]() |
[55] |
S. Senapati, Stability estimates for the relativistic Schrödinger equation from partial boundary data, Inverse Problems, 37 (2021), 015001, 25pp.
doi: 10.1088/1361-6420/abca7f.![]() ![]() ![]() |
[56] |
J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153-169.
doi: 10.2307/1971291.![]() ![]() ![]() |
[57] |
S. Vessella, A continuous dependence result in the analytic continuation problem, Forum Math., 11 (1999), 695-703.
doi: 10.1515/form.1999.020.![]() ![]() ![]() |