• Previous Article
    Neutral delay Hilfer fractional integrodifferential equations with fractional brownian motion
  • EECT Home
  • This Issue
  • Next Article
    Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints
doi: 10.3934/eect.2021060
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Stability estimate for a partial data inverse problem for the convection-diffusion equation

1. 

TIFR Centre for Applicable Mathematics, Bangalore 560065, India

2. 

Department of Mathematics, Indian Institute of Technology, Jammu 181221, India

*Corresponding author: Manmohan Vashisth

Received  April 2021 Revised  September 2021 Early access December 2021

In this article, we study the stability in the inverse problem of determining the time-dependent convection term and density coefficient appearing in the convection-diffusion equation, from partial boundary measurements. For dimension $ n\ge 2 $, we show the convection term (modulo the gauge term) admits log-log stability, whereas log-log-log stability estimate is obtained for the density coefficient.

Citation: Soumen Senapati, Manmohan Vashisth. Stability estimate for a partial data inverse problem for the convection-diffusion equation. Evolution Equations & Control Theory, doi: 10.3934/eect.2021060
References:
[1]

S. A. Avdonin and M. I. Belishev, Dynamical inverse problem for the Schrödinger equation (BC-method), Proceedings of the St. Petersburg Mathematical Society, Amer. Math. Soc. Transl. Ser. Vol. X, 214 (2005), 1-14.  doi: 10.1090/trans2/214/01.  Google Scholar

[2]

S. A. Avdonin and T. I. Seidman, Identication of $q(x)$ in $u_t = \Delta u - qu$, from boundary observations, SIAM J. Control Optim., 33 (1995), 1247-1255.  doi: 10.1137/S0363012993249729.  Google Scholar

[3]

L. Baudouin and J.-P. Puel, Uniqueness and stability in an inverse problem for the Schrödinger equation, Inverse Problems, 23 (2007), 1327-1328.  doi: 10.1088/0266-5611/23/3/C01.  Google Scholar

[4]

M. I. Belishev, Recent progress in the boundary control method, Inverse Problems, 23 (2007), R1–R67. doi: 10.1088/0266-5611/23/5/R01.  Google Scholar

[5]

M. Bellassoued and I. Ben Aïcha, Stable determination outside a cloaking region of two time-dependent coefficients in an hyperbolic equation from Dirichlet to Neumann map, J. Math. Anal. Appl., 449 (2017), 46-76.  doi: 10.1016/j.jmaa.2016.11.082.  Google Scholar

[6]

M. Bellassoued and O. Ben Fraj, Stably determining time-dependent convection-diffusion coefficients from a partial Dirichlet-to-Neumann map, Inverse Problems, 37 (2021), 045011, 35pp. doi: 10.1088/1361-6420/abe10d.  Google Scholar

[7]

M. Bellassoued and D. Dos Santos Ferreira, Stable determination of coefficients in the dynamical anisotropic Schrödinger equation from the Dirichlet-to-Neumann map, Inverse Problems, 26 (2010), 125010, 30pp. doi: 10.1088/0266-5611/26/12/125010.  Google Scholar

[8]

M. BellassouedD. Jellali and M. Yamamoto, Lipschitz stability for a hyperbolic inverse problem by finite local boundary data, Appl. Anal., 85 (2006), 1219-1243.  doi: 10.1080/00036810600787873.  Google Scholar

[9]

M. BellassouedD. Jellali and M. Yamamoto, Stability estimate for the hyperbolic inverse boundary value problem by local Dirichlet-to-Neumann map, J. Math. Anal. Appl., 343 (2008), 1036-1046.  doi: 10.1016/j.jmaa.2008.01.098.  Google Scholar

[10]

M. BellassouedY. Kian and E. Soccorsi, An inverse stability result for non-compactly supported potentials by one arbitrary lateral Neumann observation, J. Differential Equations, 260 (2016), 7535-7562.  doi: 10.1016/j.jde.2016.01.033.  Google Scholar

[11]

M. BellassouedY. Kian and E. Soccorsi, An inverse problem for the magnetic Schrödinger equation in infinite cylindrical domains, Publ. Res. Inst. Math. Sci., 54 (2018), 679-728.  doi: 10.4171/PRIMS/54-4-1.  Google Scholar

[12]

M. Bellassoued and I. Rassas, Stability estimate for an inverse problem of the convection-diffusion equation, J. Inverse Ill-Posed Probl., 28 (2020), 71-92.  doi: 10.1515/jiip-2018-0072.  Google Scholar

[13]

I. Ben Aïcha, Stability estimate for a hyperbolic inverse problem with time-dependent coefficient, Inverse Problems, 31 (2015), 125010, 21pp. doi: 10.1088/0266-5611/31/12/125010.  Google Scholar

[14]

I. Ben Aïcha, Stability estimate for an inverse problem for the Schrödinger equation in a magnetic field with time-dependent coefficient, J. Math. Phys., 58 (2017), 071508, 21pp. doi: 10.1063/1.4995606.  Google Scholar

[15]

A. L. Bukhgeĭm and M. V. Klibanov, Uniqueness in the large class of a class of multidimensional inverse problems, Dokl. Akad. Nauk SSSR, 260 (1981), 269–272.  Google Scholar

[16]

A. L. Bukhge${{\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}}$m and G. Uhlmann, Recovering a potential from partial Cauchy data, Comm. Partial Differential Equations, 27 (2002), 653-668.  doi: 10.1081/PDE-120002868.  Google Scholar

[17]

P. Caro and Y. Kian, Determination of convection terms and quasi-linearities appearing in diffusion equations, preprint, arXiv: 1812.08495. Google Scholar

[18]

J. Cheng and M. Yamamoto, The global uniqueness for determining two convection coefficients from Dirichlet to Neumann map in two dimensions, Inverse Problems, 16 (2000), L25–L30. doi: 10.1088/0266-5611/16/3/101.  Google Scholar

[19]

J. Cheng and M. Yamamoto, Identification of convection term in a parabolic equation with a single measurement, Nonlinear Anal., 50 (2002), 163-171.  doi: 10.1016/S0362-546X(01)00742-8.  Google Scholar

[20]

J. Cheng and M. Yamamoto, Determination of Two Convection Coefficients from Dirichlet to Neumann Map in the Two-Dimensional Case, SIAM J. Math. Anal., 35 (2004), 1371-1393.  doi: 10.1137/S0036141003422497.  Google Scholar

[21]

M. Choulli, An abstract inverse problem, J. Appl. Math. Stoc. Ana., 4 (1991), 117-128.  doi: 10.1155/S1048953391000084.  Google Scholar

[22]

M. Choulli, An abstract inverse problem and application, J. Math. Anal. Appl., 160 (1991), 190-202.  doi: 10.1016/0022-247X(91)90299-F.  Google Scholar

[23]

M. Choulli, Une Introduction Aux problèmes Inverses Elliptiques et Paraboliques, , Mathématiques & Applications, 65. Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-642-02460-3.  Google Scholar

[24]

M. Choulli and Y. Kian, Stability of the determination of a time-dependent coefficient in parabolic equations, Math. Control Relat. Fields, 3 (2013), 143-160.  doi: 10.3934/mcrf.2013.3.143.  Google Scholar

[25]

M. Choulli and Y. Kian, Logarithmic stability in determining the time-dependent zero order coefficient in a parabolic equation from a partial Dirichlet-to-Neumann map. Application to the determination of a nonlinear term, J. Math. Pures Appl., 114 (2018), 235-261.  doi: 10.1016/j.matpur.2017.12.003.  Google Scholar

[26]

M. ChoulliY. Kian and E. Soccorsi, Stable determination of time-dependent scalar potential from boundary measurements in a periodic quantum waveguide, SIAM J. Math. Anal., 47 (2015), 4536-4558.  doi: 10.1137/140986268.  Google Scholar

[27]

Z.-C. DengJ.-N. Yu and Y. Liu, Identifying the coefficient of first-order in parabolic equation from final measurement data, Math. Comput. Simulation, 77 (2008), 421-435.  doi: 10.1016/j.matcom.2008.01.002.  Google Scholar

[28]

D. Dos Santos FerreiraC. E. KenigJ. Sjöstrand and G. Uhlmann, Determining a magnetic Schrödinger operator from partial {C}auchy data, Comm. Math. Phys., 271 (2007), 467-488.  doi: 10.1007/s00220-006-0151-9.  Google Scholar

[29]

G. Eskin, Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect, J. Math. Phys., 49 (2008), 022105, 18pp. doi: 10.1063/1.2841329.  Google Scholar

[30]

P. Gaitan and Y. Kian, A stability result for a time-dependent potential in a cylindrical domain, Inverse Problems, 29 (2013), 065006, 18pp. doi: 10.1088/0266-5611/29/6/065006.  Google Scholar

[31]

G. Hu and Y. Kian, Determination of singular time-dependent coefficients for wave equations from full and partial data, Inverse Probl. Imaging, 12 (2018), 745-772.  doi: 10.3934/ipi.2018032.  Google Scholar

[32]

V. Isakov, Completeness of products of solutions and some inverse problems for PDE, J. Differential Equations, 92 (1991), 305-316.  doi: 10.1016/0022-0396(91)90051-A.  Google Scholar

[33]

V. Isakov, On uniqueness in inverse problems for semilinear parabolic equations, Arch. Rational Mech. Anal., 124 (1993), 1-12.  doi: 10.1007/BF00392201.  Google Scholar

[34]

V. Isakov, Inverse Problems for Partial Differential Equations, Applied Mathematical Sciences, 127. Springer-Verlag, New York, 1998.  Google Scholar

[35]

A. Katchalov, Y. Kurylev and M. Lassas, Inverse Boundary Spectral Problems, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 123, Chapman & Hall/CRC, Boca Raton, FL, 2001.  Google Scholar

[36]

Y. Kian, Stability of the determination of a coefficient for wave equations in an infinite waveguide, Inverse Probl. Imaging, 8 (2014), 713-732.  doi: 10.3934/ipi.2014.8.713.  Google Scholar

[37]

Y. Kian, Stability in the determination of a time-dependent coefficient for wave equations from partial data, J. Math. Anal. Appl., 436 (2016), 408–428. doi: 10.1016/j.jmaa.2015.12.018.  Google Scholar

[38]

Y. Kian, Recovery of time-dependent damping coefficients and potentials appearing in wave equations from partial data, SIAM J. Math. Anal., 48 (2016), 4021–4046. doi: 10.1137/16M1076708.  Google Scholar

[39]

Y. Kian, Unique determination of a time-dependent potential for wave equations from partial data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 973–990. doi: 10.1016/j.anihpc.2016.07.003.  Google Scholar

[40]

Y. Kian and L. Oksanen, Recovery of time-dependent coefficient on Riemanian manifold for hyperbolic equations, Int. Math. Res. Not. IMRN, 2019 (2019), 5087-5126.  doi: 10.1093/imrn/rnx263.  Google Scholar

[41]

Y. Kian, Q. Sang Phan and E. Soccorsi, A Carleman estimate for infinite cyclindrical quantum domains and the application to inverse problems, Inverse Problems, 30 (2014), 055016, 16 pp. doi: 10.1088/0266-5611/30/5/055016.  Google Scholar

[42]

Y. Kian, Q. Sang Phan and E. Soccorsi, Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains, J. Math. Anal. Appl., 426 (2015), 194–210. doi: 10.1016/j.jmaa.2015.01.028.  Google Scholar

[43]

Y. Kian and E. Soccorsi, Hölder stably determining the time-dependent electromagnetic potential of the Schrödinger equation, SIAM J. Math. Anal., 51 (2019), 627-647.  doi: 10.1137/18M1197308.  Google Scholar

[44]

Y. Kian and A. Tetlow, Hölder stable recovery of time-dependent electromagnetic potentials appearing in a dynamical anisotropic schrödinger equation, Inverse Probl. Imaging, 14 (2020), 819-839.  doi: 10.3934/ipi.2020038.  Google Scholar

[45]

Y. Kian and M. Yamamoto, Reconstruction and stable recovery of source terms and coefficients appearing in diffusion equations, Inverse Problems, 35 (2019), 115006, 24pp doi: 10.1088/1361-6420/ab2d42.  Google Scholar

[46]

V. P. Krishnan and M. Vashisth, An inverse problem for the relativistic Schrödinger equation with partial boundary data, Appl. Anal., 99 (2020), 1889-1909.  doi: 10.1080/00036811.2018.1549321.  Google Scholar

[47]

J.-L. Lions and E. Magenes, Problèmes Aux Limites Non Homogènes et Applications, Vol. 3. (French) Travaux et Recherches Mathématiques, Dunod, Paris, 1970.  Google Scholar

[48]

R. K. Mishra and M. Vashisth, Determining the Time Dependent Matrix Potential in A Wave Equation From Partial Boundary Data, Appl. Anal., 100 (2021), 3492-3508.  doi: 10.1080/00036811.2020.1721476.  Google Scholar

[49]

N. S. Nadirašvili, A generalization of Hadamard's three circles theorem, (Russian) Vestnik Moskov. Univ. Ser. I Mat. Meh., 31 (1976), 39-42.   Google Scholar

[50]

G. Nakamura and S. Sasayama, Inverse boundary value problem for the heat equation with discontinuous coefficients, J. Inverse Ill-Posed Probl., 21 (2013), 217-232.  doi: 10.1515/jip-2012-0073.  Google Scholar

[51]

V. Pohjola, A uniqueness result for an inverse problem of the steady state convection-diffusion equation, SIAM J. Math. Anal., 47 (2015), 2084-2103.  doi: 10.1137/140970926.  Google Scholar

[52]

Ra kesh and W. W. Symes, Uniqueness for an inverse problem for the wave equation, Comm. Partial Differential Equations, 13 (1988), 87-96.  doi: 10.1080/03605308808820539.  Google Scholar

[53]

S. K. Sahoo and M. Vashisth, A partial data inverse problem for Convection-Diffusion equation, Inverse Probl. Imaging, 14 (2020), 53-75.  doi: 10.3934/ipi.2019063.  Google Scholar

[54]

R. Salazar, Determination of time-dependent coefficients for a hyperbolic inverse problem, Inverse Problems, 29 (2013), 095015, 17pp. doi: 10.1088/0266-5611/29/9/095015.  Google Scholar

[55]

S. Senapati, Stability estimates for the relativistic Schrödinger equation from partial boundary data, Inverse Problems, 37 (2021), 015001, 25pp. doi: 10.1088/1361-6420/abca7f.  Google Scholar

[56]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153-169.  doi: 10.2307/1971291.  Google Scholar

[57]

S. Vessella, A continuous dependence result in the analytic continuation problem, Forum Math., 11 (1999), 695-703.  doi: 10.1515/form.1999.020.  Google Scholar

show all references

References:
[1]

S. A. Avdonin and M. I. Belishev, Dynamical inverse problem for the Schrödinger equation (BC-method), Proceedings of the St. Petersburg Mathematical Society, Amer. Math. Soc. Transl. Ser. Vol. X, 214 (2005), 1-14.  doi: 10.1090/trans2/214/01.  Google Scholar

[2]

S. A. Avdonin and T. I. Seidman, Identication of $q(x)$ in $u_t = \Delta u - qu$, from boundary observations, SIAM J. Control Optim., 33 (1995), 1247-1255.  doi: 10.1137/S0363012993249729.  Google Scholar

[3]

L. Baudouin and J.-P. Puel, Uniqueness and stability in an inverse problem for the Schrödinger equation, Inverse Problems, 23 (2007), 1327-1328.  doi: 10.1088/0266-5611/23/3/C01.  Google Scholar

[4]

M. I. Belishev, Recent progress in the boundary control method, Inverse Problems, 23 (2007), R1–R67. doi: 10.1088/0266-5611/23/5/R01.  Google Scholar

[5]

M. Bellassoued and I. Ben Aïcha, Stable determination outside a cloaking region of two time-dependent coefficients in an hyperbolic equation from Dirichlet to Neumann map, J. Math. Anal. Appl., 449 (2017), 46-76.  doi: 10.1016/j.jmaa.2016.11.082.  Google Scholar

[6]

M. Bellassoued and O. Ben Fraj, Stably determining time-dependent convection-diffusion coefficients from a partial Dirichlet-to-Neumann map, Inverse Problems, 37 (2021), 045011, 35pp. doi: 10.1088/1361-6420/abe10d.  Google Scholar

[7]

M. Bellassoued and D. Dos Santos Ferreira, Stable determination of coefficients in the dynamical anisotropic Schrödinger equation from the Dirichlet-to-Neumann map, Inverse Problems, 26 (2010), 125010, 30pp. doi: 10.1088/0266-5611/26/12/125010.  Google Scholar

[8]

M. BellassouedD. Jellali and M. Yamamoto, Lipschitz stability for a hyperbolic inverse problem by finite local boundary data, Appl. Anal., 85 (2006), 1219-1243.  doi: 10.1080/00036810600787873.  Google Scholar

[9]

M. BellassouedD. Jellali and M. Yamamoto, Stability estimate for the hyperbolic inverse boundary value problem by local Dirichlet-to-Neumann map, J. Math. Anal. Appl., 343 (2008), 1036-1046.  doi: 10.1016/j.jmaa.2008.01.098.  Google Scholar

[10]

M. BellassouedY. Kian and E. Soccorsi, An inverse stability result for non-compactly supported potentials by one arbitrary lateral Neumann observation, J. Differential Equations, 260 (2016), 7535-7562.  doi: 10.1016/j.jde.2016.01.033.  Google Scholar

[11]

M. BellassouedY. Kian and E. Soccorsi, An inverse problem for the magnetic Schrödinger equation in infinite cylindrical domains, Publ. Res. Inst. Math. Sci., 54 (2018), 679-728.  doi: 10.4171/PRIMS/54-4-1.  Google Scholar

[12]

M. Bellassoued and I. Rassas, Stability estimate for an inverse problem of the convection-diffusion equation, J. Inverse Ill-Posed Probl., 28 (2020), 71-92.  doi: 10.1515/jiip-2018-0072.  Google Scholar

[13]

I. Ben Aïcha, Stability estimate for a hyperbolic inverse problem with time-dependent coefficient, Inverse Problems, 31 (2015), 125010, 21pp. doi: 10.1088/0266-5611/31/12/125010.  Google Scholar

[14]

I. Ben Aïcha, Stability estimate for an inverse problem for the Schrödinger equation in a magnetic field with time-dependent coefficient, J. Math. Phys., 58 (2017), 071508, 21pp. doi: 10.1063/1.4995606.  Google Scholar

[15]

A. L. Bukhgeĭm and M. V. Klibanov, Uniqueness in the large class of a class of multidimensional inverse problems, Dokl. Akad. Nauk SSSR, 260 (1981), 269–272.  Google Scholar

[16]

A. L. Bukhge${{\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}}$m and G. Uhlmann, Recovering a potential from partial Cauchy data, Comm. Partial Differential Equations, 27 (2002), 653-668.  doi: 10.1081/PDE-120002868.  Google Scholar

[17]

P. Caro and Y. Kian, Determination of convection terms and quasi-linearities appearing in diffusion equations, preprint, arXiv: 1812.08495. Google Scholar

[18]

J. Cheng and M. Yamamoto, The global uniqueness for determining two convection coefficients from Dirichlet to Neumann map in two dimensions, Inverse Problems, 16 (2000), L25–L30. doi: 10.1088/0266-5611/16/3/101.  Google Scholar

[19]

J. Cheng and M. Yamamoto, Identification of convection term in a parabolic equation with a single measurement, Nonlinear Anal., 50 (2002), 163-171.  doi: 10.1016/S0362-546X(01)00742-8.  Google Scholar

[20]

J. Cheng and M. Yamamoto, Determination of Two Convection Coefficients from Dirichlet to Neumann Map in the Two-Dimensional Case, SIAM J. Math. Anal., 35 (2004), 1371-1393.  doi: 10.1137/S0036141003422497.  Google Scholar

[21]

M. Choulli, An abstract inverse problem, J. Appl. Math. Stoc. Ana., 4 (1991), 117-128.  doi: 10.1155/S1048953391000084.  Google Scholar

[22]

M. Choulli, An abstract inverse problem and application, J. Math. Anal. Appl., 160 (1991), 190-202.  doi: 10.1016/0022-247X(91)90299-F.  Google Scholar

[23]

M. Choulli, Une Introduction Aux problèmes Inverses Elliptiques et Paraboliques, , Mathématiques & Applications, 65. Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-642-02460-3.  Google Scholar

[24]

M. Choulli and Y. Kian, Stability of the determination of a time-dependent coefficient in parabolic equations, Math. Control Relat. Fields, 3 (2013), 143-160.  doi: 10.3934/mcrf.2013.3.143.  Google Scholar

[25]

M. Choulli and Y. Kian, Logarithmic stability in determining the time-dependent zero order coefficient in a parabolic equation from a partial Dirichlet-to-Neumann map. Application to the determination of a nonlinear term, J. Math. Pures Appl., 114 (2018), 235-261.  doi: 10.1016/j.matpur.2017.12.003.  Google Scholar

[26]

M. ChoulliY. Kian and E. Soccorsi, Stable determination of time-dependent scalar potential from boundary measurements in a periodic quantum waveguide, SIAM J. Math. Anal., 47 (2015), 4536-4558.  doi: 10.1137/140986268.  Google Scholar

[27]

Z.-C. DengJ.-N. Yu and Y. Liu, Identifying the coefficient of first-order in parabolic equation from final measurement data, Math. Comput. Simulation, 77 (2008), 421-435.  doi: 10.1016/j.matcom.2008.01.002.  Google Scholar

[28]

D. Dos Santos FerreiraC. E. KenigJ. Sjöstrand and G. Uhlmann, Determining a magnetic Schrödinger operator from partial {C}auchy data, Comm. Math. Phys., 271 (2007), 467-488.  doi: 10.1007/s00220-006-0151-9.  Google Scholar

[29]

G. Eskin, Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect, J. Math. Phys., 49 (2008), 022105, 18pp. doi: 10.1063/1.2841329.  Google Scholar

[30]

P. Gaitan and Y. Kian, A stability result for a time-dependent potential in a cylindrical domain, Inverse Problems, 29 (2013), 065006, 18pp. doi: 10.1088/0266-5611/29/6/065006.  Google Scholar

[31]

G. Hu and Y. Kian, Determination of singular time-dependent coefficients for wave equations from full and partial data, Inverse Probl. Imaging, 12 (2018), 745-772.  doi: 10.3934/ipi.2018032.  Google Scholar

[32]

V. Isakov, Completeness of products of solutions and some inverse problems for PDE, J. Differential Equations, 92 (1991), 305-316.  doi: 10.1016/0022-0396(91)90051-A.  Google Scholar

[33]

V. Isakov, On uniqueness in inverse problems for semilinear parabolic equations, Arch. Rational Mech. Anal., 124 (1993), 1-12.  doi: 10.1007/BF00392201.  Google Scholar

[34]

V. Isakov, Inverse Problems for Partial Differential Equations, Applied Mathematical Sciences, 127. Springer-Verlag, New York, 1998.  Google Scholar

[35]

A. Katchalov, Y. Kurylev and M. Lassas, Inverse Boundary Spectral Problems, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 123, Chapman & Hall/CRC, Boca Raton, FL, 2001.  Google Scholar

[36]

Y. Kian, Stability of the determination of a coefficient for wave equations in an infinite waveguide, Inverse Probl. Imaging, 8 (2014), 713-732.  doi: 10.3934/ipi.2014.8.713.  Google Scholar

[37]

Y. Kian, Stability in the determination of a time-dependent coefficient for wave equations from partial data, J. Math. Anal. Appl., 436 (2016), 408–428. doi: 10.1016/j.jmaa.2015.12.018.  Google Scholar

[38]

Y. Kian, Recovery of time-dependent damping coefficients and potentials appearing in wave equations from partial data, SIAM J. Math. Anal., 48 (2016), 4021–4046. doi: 10.1137/16M1076708.  Google Scholar

[39]

Y. Kian, Unique determination of a time-dependent potential for wave equations from partial data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 973–990. doi: 10.1016/j.anihpc.2016.07.003.  Google Scholar

[40]

Y. Kian and L. Oksanen, Recovery of time-dependent coefficient on Riemanian manifold for hyperbolic equations, Int. Math. Res. Not. IMRN, 2019 (2019), 5087-5126.  doi: 10.1093/imrn/rnx263.  Google Scholar

[41]

Y. Kian, Q. Sang Phan and E. Soccorsi, A Carleman estimate for infinite cyclindrical quantum domains and the application to inverse problems, Inverse Problems, 30 (2014), 055016, 16 pp. doi: 10.1088/0266-5611/30/5/055016.  Google Scholar

[42]

Y. Kian, Q. Sang Phan and E. Soccorsi, Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains, J. Math. Anal. Appl., 426 (2015), 194–210. doi: 10.1016/j.jmaa.2015.01.028.  Google Scholar

[43]

Y. Kian and E. Soccorsi, Hölder stably determining the time-dependent electromagnetic potential of the Schrödinger equation, SIAM J. Math. Anal., 51 (2019), 627-647.  doi: 10.1137/18M1197308.  Google Scholar

[44]

Y. Kian and A. Tetlow, Hölder stable recovery of time-dependent electromagnetic potentials appearing in a dynamical anisotropic schrödinger equation, Inverse Probl. Imaging, 14 (2020), 819-839.  doi: 10.3934/ipi.2020038.  Google Scholar

[45]

Y. Kian and M. Yamamoto, Reconstruction and stable recovery of source terms and coefficients appearing in diffusion equations, Inverse Problems, 35 (2019), 115006, 24pp doi: 10.1088/1361-6420/ab2d42.  Google Scholar

[46]

V. P. Krishnan and M. Vashisth, An inverse problem for the relativistic Schrödinger equation with partial boundary data, Appl. Anal., 99 (2020), 1889-1909.  doi: 10.1080/00036811.2018.1549321.  Google Scholar

[47]

J.-L. Lions and E. Magenes, Problèmes Aux Limites Non Homogènes et Applications, Vol. 3. (French) Travaux et Recherches Mathématiques, Dunod, Paris, 1970.  Google Scholar

[48]

R. K. Mishra and M. Vashisth, Determining the Time Dependent Matrix Potential in A Wave Equation From Partial Boundary Data, Appl. Anal., 100 (2021), 3492-3508.  doi: 10.1080/00036811.2020.1721476.  Google Scholar

[49]

N. S. Nadirašvili, A generalization of Hadamard's three circles theorem, (Russian) Vestnik Moskov. Univ. Ser. I Mat. Meh., 31 (1976), 39-42.   Google Scholar

[50]

G. Nakamura and S. Sasayama, Inverse boundary value problem for the heat equation with discontinuous coefficients, J. Inverse Ill-Posed Probl., 21 (2013), 217-232.  doi: 10.1515/jip-2012-0073.  Google Scholar

[51]

V. Pohjola, A uniqueness result for an inverse problem of the steady state convection-diffusion equation, SIAM J. Math. Anal., 47 (2015), 2084-2103.  doi: 10.1137/140970926.  Google Scholar

[52]

Ra kesh and W. W. Symes, Uniqueness for an inverse problem for the wave equation, Comm. Partial Differential Equations, 13 (1988), 87-96.  doi: 10.1080/03605308808820539.  Google Scholar

[53]

S. K. Sahoo and M. Vashisth, A partial data inverse problem for Convection-Diffusion equation, Inverse Probl. Imaging, 14 (2020), 53-75.  doi: 10.3934/ipi.2019063.  Google Scholar

[54]

R. Salazar, Determination of time-dependent coefficients for a hyperbolic inverse problem, Inverse Problems, 29 (2013), 095015, 17pp. doi: 10.1088/0266-5611/29/9/095015.  Google Scholar

[55]

S. Senapati, Stability estimates for the relativistic Schrödinger equation from partial boundary data, Inverse Problems, 37 (2021), 015001, 25pp. doi: 10.1088/1361-6420/abca7f.  Google Scholar

[56]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153-169.  doi: 10.2307/1971291.  Google Scholar

[57]

S. Vessella, A continuous dependence result in the analytic continuation problem, Forum Math., 11 (1999), 695-703.  doi: 10.1515/form.1999.020.  Google Scholar

[1]

Mourad Bellassoued, David Dos Santos Ferreira. Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2011, 5 (4) : 745-773. doi: 10.3934/ipi.2011.5.745

[2]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[3]

Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control & Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307

[4]

Victor Isakov, Jenn-Nan Wang. Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2014, 8 (4) : 1139-1150. doi: 10.3934/ipi.2014.8.1139

[5]

Xinchi Huang, Atsushi Kawamoto. Inverse problems for a half-order time-fractional diffusion equation in arbitrary dimension by Carleman estimates. Inverse Problems & Imaging, 2022, 16 (1) : 39-67. doi: 10.3934/ipi.2021040

[6]

Francis J. Chung. Partial data for the Neumann-Dirichlet magnetic Schrödinger inverse problem. Inverse Problems & Imaging, 2014, 8 (4) : 959-989. doi: 10.3934/ipi.2014.8.959

[7]

Victor Isakov. Increasing stability for the Schrödinger potential from the Dirichlet-to Neumann map. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 631-640. doi: 10.3934/dcdss.2011.4.631

[8]

Carmen Calvo-Jurado, Juan Casado-Díaz, Manuel Luna-Laynez. Parabolic problems with varying operators and Dirichlet and Neumann boundary conditions on varying sets. Conference Publications, 2007, 2007 (Special) : 181-190. doi: 10.3934/proc.2007.2007.181

[9]

Peng Gao. Global Carleman estimate for the Kawahara equation and its applications. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1853-1874. doi: 10.3934/cpaa.2018088

[10]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Stability for determination of Riemannian metrics by spectral data and Dirichlet-to-Neumann map limited on arbitrary subboundary. Inverse Problems & Imaging, 2019, 13 (6) : 1213-1258. doi: 10.3934/ipi.2019054

[11]

Mourad Bellassoued, Zouhour Rezig. Recovery of transversal metric tensor in the Schrödinger equation from the Dirichlet-to-Neumann map. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021158

[12]

Judith Vancostenoble. Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 761-790. doi: 10.3934/dcdss.2011.4.761

[13]

Chunpeng Wang, Yanan Zhou, Runmei Du, Qiang Liu. Carleman estimate for solutions to a degenerate convection-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4207-4222. doi: 10.3934/dcdsb.2018133

[14]

Ihsane Bikri, Ronald B. Guenther, Enrique A. Thomann. The Dirichlet to Neumann map - An application to the Stokes problem in half space. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 221-230. doi: 10.3934/dcdss.2010.3.221

[15]

Jussi Behrndt, A. F. M. ter Elst. The Dirichlet-to-Neumann map for Schrödinger operators with complex potentials. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 661-671. doi: 10.3934/dcdss.2017033

[16]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[17]

Mehdi Badra, Fabien Caubet, Jérémi Dardé. Stability estimates for Navier-Stokes equations and application to inverse problems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2379-2407. doi: 10.3934/dcdsb.2016052

[18]

Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems & Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010

[19]

Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control & Related Fields, 2019, 9 (2) : 277-287. doi: 10.3934/mcrf.2019014

[20]

Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014

2020 Impact Factor: 1.081

Article outline

[Back to Top]