• Previous Article
    Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space
  • EECT Home
  • This Issue
  • Next Article
    Exponential stability for a multi-particle system with piecewise interaction function and stochastic disturbance
doi: 10.3934/eect.2021061
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Convergence of random attractors towards deterministic singleton attractor for 2D and 3D convective Brinkman-Forchheimer equations

Department of Mathematics, Indian Institute of Technology Roorkee-IIT Roorkee, Haridwar Highway, Roorkee, Uttarakhand 247667, INDIA

*Corresponding author: Manil T. Mohan

Received  May 2021 Revised  November 2021 Early access December 2021

Fund Project: The second author is supported by DST INSPIRE Faculty Award (IFA17-MA110)

This work deals with the asymptotic behavior of the two as well as three dimensional convective Brinkman-Forchheimer (CBF) equations in an
$ n $
-dimensional torus (
$ n = 2, 3 $
):
$ \frac{\partial\boldsymbol{u}}{\partial t}-\mu \Delta\boldsymbol{u}+(\boldsymbol{u}\cdot\nabla)\boldsymbol{u}+\alpha\boldsymbol{u}+\beta|\boldsymbol{u}|^{r-1}\boldsymbol{u}+\nabla p = \boldsymbol{f}, \ \nabla\cdot\boldsymbol{u} = 0, $
where
$ r\geq1 $
. We prove that the global attractor of the above system is singleton under small forcing intensity (
$ r\geq 1 $
for
$ n = 2 $
and
$ r\geq 3 $
for
$ n = 3 $
with
$ 2\beta\mu\geq 1 $
for
$ r = n = 3 $
). But if one perturbs the above system with an additive or multiplicative white noise, there is no sufficient evidence that the random attractor keeps the singleton structure. We obtain that the random attractor for 2D stochastic CBF equations forced by additive and multiplicative white noise converges towards the deterministic singleton attractor for all
$ 1\leq r<\infty $
, when the coefficient of random perturbation converges to zero (upper and lower semicontinuity). For the case of 3D stochastic CBF equations perturbed by additive and multiplicative white noise, we are able to establish that the random attractor converges towards the deterministic singleton attractor for
$ 3\leq r<\infty $
(
$ 2\beta\mu\geq 1 $
for
$ r = 3 $
), when the coefficient of random perturbation converges to zero.
Citation: Kush Kinra, Manil T. Mohan. Convergence of random attractors towards deterministic singleton attractor for 2D and 3D convective Brinkman-Forchheimer equations. Evolution Equations & Control Theory, doi: 10.3934/eect.2021061
References:
[1]

S. N. Antontsev and H. B. de Oliveira, The Navier-Stokes problem modified by an absorption term, Appl. Anal., 89 (2010), 1805-1825.  doi: 10.1080/00036811.2010.495341.  Google Scholar

[2]

L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[3]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, 1992.  Google Scholar

[4]

J. Babutzka and P. C. Kunstmann, $L^q$-Helmholtz decomposition on periodic domains and applications to Navier-Stokes equations, J. Math. Fluid Mech., 20 (2018), 1093-1121.  doi: 10.1007/s00021-017-0356-z.  Google Scholar

[5]

P. BatesH. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, Stoch. Dyn., 6 (2006), 1-21.  doi: 10.1142/S0219493706001621.  Google Scholar

[6]

P. BatesK. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.  doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[7]

Z. BrzeźniakB. Goldys and Q. T. Le Gia, Random attractors for the stochastic Navier-Stokes equations on the 2D unit sphere, J. Math. Fluid Mech., 20 (2018), 227-253.  doi: 10.1007/s00021-017-0351-4.  Google Scholar

[8]

T. CaraballoH. CrauelJ. A. Langa and J. C. Robinson, The effect of noise on the Chafee-Infante equation: A nonlinear case study, Proc. Amer. Math. Soc., 135 (2007), 373-382.  doi: 10.1090/S0002-9939-06-08593-5.  Google Scholar

[9]

T. CaraballoJ. A. Langa and J. C. Robinson, Upper semicontinuity of attractors for small random perturbations of dynamical systems, Comm. Partial Differential Equations, 23 (1998), 1557-1581.  doi: 10.1080/03605309808821394.  Google Scholar

[10]

A. N. CarvalhoJ. A. Langa and J. C. Robinson, On the continuity of pullback attractors for evolution processes, Nonlinear Anal., 71 (2009), 1812-1824.  doi: 10.1016/j.na.2009.01.016.  Google Scholar

[11]

I. Chueshov, Dynamics of Quasi-Stable Dissipative Systems, Universitext. Springer, Cham, 2015. doi: 10.1007/978-3-319-22903-4.  Google Scholar

[12]

H. Crauel, Global random attractors are uniquely determined by attracting deterministic compact sets, Ann. Mat. Pura Appl., 176 (1999), 57-72.  doi: 10.1007/BF02505989.  Google Scholar

[13]

H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dynamics Differential Equations, 9 (1997), 307-341. doi: 10.1007/BF02219225.  Google Scholar

[14]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Prob. Theory Related Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[15]

H. Cui and J. A. Langa, Uniform attractors for non-autonomous random dynamical systems, J. Differential Equations, 263 (2017), 1225-1268.  doi: 10.1016/j.jde.2017.03.018.  Google Scholar

[16]

H. Cui and P. E. Kloeden, Convergence rate of random attractors for 2D Navier-Stokes equation towards the deterministic singleton attractor, Contemporary Approaches and Methods in Fundamental Mathematics and Mechanics, (2021), 233–255. doi: 10.1007/978-3-030-50302-4_10.  Google Scholar

[17]

X. Fan, Attractors for a damped stochastic wave equation of the sine-Gordon type with sublinear multiplicative noise, Stoch. Anal. Appl., 24 (2006), 767-793.  doi: 10.1080/07362990600751860.  Google Scholar

[18]

C. L. Fefferman, K. W. Hajduk and J. C. Robinson, Simultaneous approximation in Lebesgue and Sobolev norms via eigenspaces, https://arXiv.org/pdf/1904.03337.pdf. Google Scholar

[19]

X. Feng and B. You, Random attractors for the two-dimensional stochastic g-Navier-Stokes equations, Stochastics, 92 (2020), 613-626.  doi: 10.1080/17442508.2019.1642340.  Google Scholar

[20]

F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier- Stokes equation with multiplicative white noise, Stochastics Stochastic Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.  Google Scholar

[21]

C. FoiasO. P. ManleyR. Temam and Y. M. Tréve, Asymptotic analysis of the Navier-Stokes equations, Phys. D, 9 (1983), 157-188.  doi: 10.1016/0167-2789(83)90297-X.  Google Scholar

[22]

D. Fujiwara and H. Morimoto, An $L^r$-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 24 (1977), 685-700.   Google Scholar

[23]

B. GessW. Liu and A. Schenke, Random attractors for locally monotone stochastic partial differential equations, J. Differential Equations, 269 (2020), 3414-3455.  doi: 10.1016/j.jde.2020.03.002.  Google Scholar

[24]

K. W. Hajduk and J. C. Robinson, Energy equality for the 3D critical convective Brinkman-Forchheimer equations, J. Differential Equations, 263 (2017), 7141-7161.  doi: 10.1016/j.jde.2017.08.001.  Google Scholar

[25]

J. K. Hale and G. Raugel, Lower semicontinuity of attractors of gradient systems and applications, Ann. Mat. Pura Appl., 154 (1989), 281-326.  doi: 10.1007/BF01790353.  Google Scholar

[26]

X. Jia and X. Ding, Random attractors for stochastic retarded 2D-Navier-Stokes equations with additive noise, J. Funct. Spaces, 2018 (2018), Art. ID 3105239, 14pp. doi: 10.1155/2018/3105239.  Google Scholar

[27]

V. K. Kalantarov and S. Zelik, Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities, Commun. Pure Appl. Anal., 11 (2012), 2037-2054.  doi: 10.3934/cpaa.2012.11.2037.  Google Scholar

[28]

K. Kinra and M. T. Mohan, Random attractors for 2D and 3D stochastic convective Brinkman-Forchheimer equations in some unbounded domains, Submitted, https://arXiv.org/pdf/2010.08753.pdf. Google Scholar

[29]

K. Kinra and M. T. Mohan, Existence and upper semicontinuity of random attractors for the 2D stochastic convective Brinkman-Forchheimer equations in bounded domains, Submitted, https://arXiv.org/pdf/2011.06206.pdf. Google Scholar

[30]

K. Kinra and M. T. Mohan, ${\mathbb{H}}^1$-random attractors for the 2D stochastic convective Brinkman-Forchheimer equations in some unbounded domains, Submitted, https://arXiv.org/pdf/2111.07841.pdf. Google Scholar

[31]

K. Kinra and M. T. Mohan, Large time behavior of the deterministic and stochastic 3D convective Brinkman-Forchheimer equations in periodic domains, J. Dynamics and Differential Equations, 2021 doi: 10.1007/s10884-021-10073-7.  Google Scholar

[32]

K. Kinra and M. T. Mohan, Weak pullback mean random attractors for the stochastic convective Brinkman-Forchheimer equations and locally monotone stochastic partial differential equations, Submitted, https://arXiv.org/pdf/2012.12605.pdf. Google Scholar

[33]

Y. LiH. Cui and J. Li, Upper semi-continuity and regularity of random attractors on p-times integrable spaces and applications, Nonlinear Anal., 109 (2014), 33-44.  doi: 10.1016/j.na.2014.06.013.  Google Scholar

[34]

D. Li and P. Kloeden, Equi-attraction and the continuous dependence of attractors on parameters, Glasg. Math. J., 46 (2004), 131-141.  doi: 10.1017/S0017089503001605.  Google Scholar

[35]

L. Liu and X. Fu, Existence and upper semicontinuity of $(L^2, L^q)$ pullback attractors for a stochastic p-laplacian equation, Commun. Pure Appl. Anal., 16 (2017), 443-474.  doi: 10.3934/cpaa.2017023.  Google Scholar

[36]

H. Liu and H. Gao, Stochastic 3D Navier-Stokes equations with nonlinear damping: Martingale solution, strong solution and small time LDP, Interdiscip. Math. Sci., World Sci. Publ., 20 (2019), 9-36.   Google Scholar

[37]

P. A. MarkowichE. S. Titi and S. Trabelsi, Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model, Nonlinearity, 29 (2016), 1292-1328.  doi: 10.1088/0951-7715/29/4/1292.  Google Scholar

[38]

M. T. Mohan, On the convective Brinkman-Forchheimer equations, Submitted. Google Scholar

[39]

M. T. Mohan, Stochastic convective Brinkman-Forchheimer equations, Submitted, 2020, https://arXiv.org/abs/2007.09376. Google Scholar

[40]

M. T. Mohan, Asymptotic analysis of the 2D convective Brinkman-Forchheimer equations in unbounded domains: Global attractors and upper semicontinuity, Submitted, https://arXiv.org/abs/2010.12814. Google Scholar

[41]

M. T. Mohan, The ${\mathbb{H}}^1$-compact global attractor for the two dimentional convective Brinkman-Forchheimer equations in unbounded domains, J. Dynamical and Control Systems, 2021. doi: 10.1007/s10883-021-09545-2.  Google Scholar

[42]

M. T. Mohan, Well-posedness and asymptotic behavior of stochastic convective Brinkman-Forchheimer equations perturbed by pure jump noise, Stoch PDE: Anal Comp, (2021). doi: 10.1007/s40072-021-00207-9.  Google Scholar

[43]

M. T. Mohan, ${\mathbb{L}}^p$-solutions of deterministic and stochastic convective Brinkman-Forchheimer equations, Anal. Math. Phys., 11 (2021), Ar. No.: 164, 33pp. doi: 10.1007/s13324-021-00595-0.  Google Scholar

[44]

M. T. Mohan, Martingale solutions of two and three dimensional stochastic convective Brinkman-Forchheimer equations forced by Lévy noise, Submitted, https://arXiv.org/pdf/2109.05510.pdf. Google Scholar

[45]

J. C. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, 2001.  Google Scholar

[46]

J. C. Robinson, Attractors and finite-dimensional behavior in the 2D Navier-Stokes equations, ISRN Math. Anal., 2013 (2013), Article ID 291823, 29pp. doi: 10.1155/2013/291823.  Google Scholar

[47]

J. C. Robinson, J. L. Rodrigo and W. Sadowski, The Three-Dimensional Navier-Stokes Equations, Classical Theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, UK, 2016. doi: 10.1017/CBO9781139095143.  Google Scholar

[48]

J. C. Robinson and W. Sadowski, A local smoothness criterion for solutions of the 3D Navier-Stokes equations, Rend. Semin. Mat. Univ. Padova, 131 (2014), 159-178.  doi: 10.4171/RSMUP/131-9.  Google Scholar

[49]

M. Röckner and X. Zhang, Tamed 3D Navier-Stokes equation: Existence, uniqueness and regularity, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 12 (2009), 525-549.  doi: 10.1142/S0219025709003859.  Google Scholar

[50]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[51]

R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, 2$^{nd}$ edition, CBMS-NSF Regional Conference Series in Applied Mathematics, 1995. doi: 10.1137/1.9781611970050.  Google Scholar

[52]

B. Wang, Upper semicontinuity of random attractors for non-compact random dynamical systems, Electron. J. Differential Equations, (2009), 1–18.  Google Scholar

[53]

J. Wang, C. Li, L. Yang and M. Jia, Upper semi-continuity of random attractors and existence of invariant measures for nonlocal stochastic Swift-Hohenberg equation with multiplicative noise, J. Math. Phys., 62 (2021), 111507, 31pp. doi: 10.1063/5.0039187.  Google Scholar

[54]

B. You, The existence of a random attractor for the three dimensional damped Navier-Stokes equations with additive noise, Stoch. Anal. Appl., 35 (2017), 691-700.  doi: 10.1080/07362994.2017.1311794.  Google Scholar

[55]

S. Zhou and Z. Wang, Upper-semicontinuity of attractors for reaction-diffusion equation and damped wave equation in $\mathbb{R}^n$ perturbed by small multiplicative noises, Dynam. Systems Appl., 22 (2013), 15-31.   Google Scholar

show all references

References:
[1]

S. N. Antontsev and H. B. de Oliveira, The Navier-Stokes problem modified by an absorption term, Appl. Anal., 89 (2010), 1805-1825.  doi: 10.1080/00036811.2010.495341.  Google Scholar

[2]

L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[3]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, 1992.  Google Scholar

[4]

J. Babutzka and P. C. Kunstmann, $L^q$-Helmholtz decomposition on periodic domains and applications to Navier-Stokes equations, J. Math. Fluid Mech., 20 (2018), 1093-1121.  doi: 10.1007/s00021-017-0356-z.  Google Scholar

[5]

P. BatesH. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, Stoch. Dyn., 6 (2006), 1-21.  doi: 10.1142/S0219493706001621.  Google Scholar

[6]

P. BatesK. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.  doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[7]

Z. BrzeźniakB. Goldys and Q. T. Le Gia, Random attractors for the stochastic Navier-Stokes equations on the 2D unit sphere, J. Math. Fluid Mech., 20 (2018), 227-253.  doi: 10.1007/s00021-017-0351-4.  Google Scholar

[8]

T. CaraballoH. CrauelJ. A. Langa and J. C. Robinson, The effect of noise on the Chafee-Infante equation: A nonlinear case study, Proc. Amer. Math. Soc., 135 (2007), 373-382.  doi: 10.1090/S0002-9939-06-08593-5.  Google Scholar

[9]

T. CaraballoJ. A. Langa and J. C. Robinson, Upper semicontinuity of attractors for small random perturbations of dynamical systems, Comm. Partial Differential Equations, 23 (1998), 1557-1581.  doi: 10.1080/03605309808821394.  Google Scholar

[10]

A. N. CarvalhoJ. A. Langa and J. C. Robinson, On the continuity of pullback attractors for evolution processes, Nonlinear Anal., 71 (2009), 1812-1824.  doi: 10.1016/j.na.2009.01.016.  Google Scholar

[11]

I. Chueshov, Dynamics of Quasi-Stable Dissipative Systems, Universitext. Springer, Cham, 2015. doi: 10.1007/978-3-319-22903-4.  Google Scholar

[12]

H. Crauel, Global random attractors are uniquely determined by attracting deterministic compact sets, Ann. Mat. Pura Appl., 176 (1999), 57-72.  doi: 10.1007/BF02505989.  Google Scholar

[13]

H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dynamics Differential Equations, 9 (1997), 307-341. doi: 10.1007/BF02219225.  Google Scholar

[14]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Prob. Theory Related Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[15]

H. Cui and J. A. Langa, Uniform attractors for non-autonomous random dynamical systems, J. Differential Equations, 263 (2017), 1225-1268.  doi: 10.1016/j.jde.2017.03.018.  Google Scholar

[16]

H. Cui and P. E. Kloeden, Convergence rate of random attractors for 2D Navier-Stokes equation towards the deterministic singleton attractor, Contemporary Approaches and Methods in Fundamental Mathematics and Mechanics, (2021), 233–255. doi: 10.1007/978-3-030-50302-4_10.  Google Scholar

[17]

X. Fan, Attractors for a damped stochastic wave equation of the sine-Gordon type with sublinear multiplicative noise, Stoch. Anal. Appl., 24 (2006), 767-793.  doi: 10.1080/07362990600751860.  Google Scholar

[18]

C. L. Fefferman, K. W. Hajduk and J. C. Robinson, Simultaneous approximation in Lebesgue and Sobolev norms via eigenspaces, https://arXiv.org/pdf/1904.03337.pdf. Google Scholar

[19]

X. Feng and B. You, Random attractors for the two-dimensional stochastic g-Navier-Stokes equations, Stochastics, 92 (2020), 613-626.  doi: 10.1080/17442508.2019.1642340.  Google Scholar

[20]

F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier- Stokes equation with multiplicative white noise, Stochastics Stochastic Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.  Google Scholar

[21]

C. FoiasO. P. ManleyR. Temam and Y. M. Tréve, Asymptotic analysis of the Navier-Stokes equations, Phys. D, 9 (1983), 157-188.  doi: 10.1016/0167-2789(83)90297-X.  Google Scholar

[22]

D. Fujiwara and H. Morimoto, An $L^r$-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 24 (1977), 685-700.   Google Scholar

[23]

B. GessW. Liu and A. Schenke, Random attractors for locally monotone stochastic partial differential equations, J. Differential Equations, 269 (2020), 3414-3455.  doi: 10.1016/j.jde.2020.03.002.  Google Scholar

[24]

K. W. Hajduk and J. C. Robinson, Energy equality for the 3D critical convective Brinkman-Forchheimer equations, J. Differential Equations, 263 (2017), 7141-7161.  doi: 10.1016/j.jde.2017.08.001.  Google Scholar

[25]

J. K. Hale and G. Raugel, Lower semicontinuity of attractors of gradient systems and applications, Ann. Mat. Pura Appl., 154 (1989), 281-326.  doi: 10.1007/BF01790353.  Google Scholar

[26]

X. Jia and X. Ding, Random attractors for stochastic retarded 2D-Navier-Stokes equations with additive noise, J. Funct. Spaces, 2018 (2018), Art. ID 3105239, 14pp. doi: 10.1155/2018/3105239.  Google Scholar

[27]

V. K. Kalantarov and S. Zelik, Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities, Commun. Pure Appl. Anal., 11 (2012), 2037-2054.  doi: 10.3934/cpaa.2012.11.2037.  Google Scholar

[28]

K. Kinra and M. T. Mohan, Random attractors for 2D and 3D stochastic convective Brinkman-Forchheimer equations in some unbounded domains, Submitted, https://arXiv.org/pdf/2010.08753.pdf. Google Scholar

[29]

K. Kinra and M. T. Mohan, Existence and upper semicontinuity of random attractors for the 2D stochastic convective Brinkman-Forchheimer equations in bounded domains, Submitted, https://arXiv.org/pdf/2011.06206.pdf. Google Scholar

[30]

K. Kinra and M. T. Mohan, ${\mathbb{H}}^1$-random attractors for the 2D stochastic convective Brinkman-Forchheimer equations in some unbounded domains, Submitted, https://arXiv.org/pdf/2111.07841.pdf. Google Scholar

[31]

K. Kinra and M. T. Mohan, Large time behavior of the deterministic and stochastic 3D convective Brinkman-Forchheimer equations in periodic domains, J. Dynamics and Differential Equations, 2021 doi: 10.1007/s10884-021-10073-7.  Google Scholar

[32]

K. Kinra and M. T. Mohan, Weak pullback mean random attractors for the stochastic convective Brinkman-Forchheimer equations and locally monotone stochastic partial differential equations, Submitted, https://arXiv.org/pdf/2012.12605.pdf. Google Scholar

[33]

Y. LiH. Cui and J. Li, Upper semi-continuity and regularity of random attractors on p-times integrable spaces and applications, Nonlinear Anal., 109 (2014), 33-44.  doi: 10.1016/j.na.2014.06.013.  Google Scholar

[34]

D. Li and P. Kloeden, Equi-attraction and the continuous dependence of attractors on parameters, Glasg. Math. J., 46 (2004), 131-141.  doi: 10.1017/S0017089503001605.  Google Scholar

[35]

L. Liu and X. Fu, Existence and upper semicontinuity of $(L^2, L^q)$ pullback attractors for a stochastic p-laplacian equation, Commun. Pure Appl. Anal., 16 (2017), 443-474.  doi: 10.3934/cpaa.2017023.  Google Scholar

[36]

H. Liu and H. Gao, Stochastic 3D Navier-Stokes equations with nonlinear damping: Martingale solution, strong solution and small time LDP, Interdiscip. Math. Sci., World Sci. Publ., 20 (2019), 9-36.   Google Scholar

[37]

P. A. MarkowichE. S. Titi and S. Trabelsi, Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model, Nonlinearity, 29 (2016), 1292-1328.  doi: 10.1088/0951-7715/29/4/1292.  Google Scholar

[38]

M. T. Mohan, On the convective Brinkman-Forchheimer equations, Submitted. Google Scholar

[39]

M. T. Mohan, Stochastic convective Brinkman-Forchheimer equations, Submitted, 2020, https://arXiv.org/abs/2007.09376. Google Scholar

[40]

M. T. Mohan, Asymptotic analysis of the 2D convective Brinkman-Forchheimer equations in unbounded domains: Global attractors and upper semicontinuity, Submitted, https://arXiv.org/abs/2010.12814. Google Scholar

[41]

M. T. Mohan, The ${\mathbb{H}}^1$-compact global attractor for the two dimentional convective Brinkman-Forchheimer equations in unbounded domains, J. Dynamical and Control Systems, 2021. doi: 10.1007/s10883-021-09545-2.  Google Scholar

[42]

M. T. Mohan, Well-posedness and asymptotic behavior of stochastic convective Brinkman-Forchheimer equations perturbed by pure jump noise, Stoch PDE: Anal Comp, (2021). doi: 10.1007/s40072-021-00207-9.  Google Scholar

[43]

M. T. Mohan, ${\mathbb{L}}^p$-solutions of deterministic and stochastic convective Brinkman-Forchheimer equations, Anal. Math. Phys., 11 (2021), Ar. No.: 164, 33pp. doi: 10.1007/s13324-021-00595-0.  Google Scholar

[44]

M. T. Mohan, Martingale solutions of two and three dimensional stochastic convective Brinkman-Forchheimer equations forced by Lévy noise, Submitted, https://arXiv.org/pdf/2109.05510.pdf. Google Scholar

[45]

J. C. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, 2001.  Google Scholar

[46]

J. C. Robinson, Attractors and finite-dimensional behavior in the 2D Navier-Stokes equations, ISRN Math. Anal., 2013 (2013), Article ID 291823, 29pp. doi: 10.1155/2013/291823.  Google Scholar

[47]

J. C. Robinson, J. L. Rodrigo and W. Sadowski, The Three-Dimensional Navier-Stokes Equations, Classical Theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, UK, 2016. doi: 10.1017/CBO9781139095143.  Google Scholar

[48]

J. C. Robinson and W. Sadowski, A local smoothness criterion for solutions of the 3D Navier-Stokes equations, Rend. Semin. Mat. Univ. Padova, 131 (2014), 159-178.  doi: 10.4171/RSMUP/131-9.  Google Scholar

[49]

M. Röckner and X. Zhang, Tamed 3D Navier-Stokes equation: Existence, uniqueness and regularity, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 12 (2009), 525-549.  doi: 10.1142/S0219025709003859.  Google Scholar

[50]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[51]

R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, 2$^{nd}$ edition, CBMS-NSF Regional Conference Series in Applied Mathematics, 1995. doi: 10.1137/1.9781611970050.  Google Scholar

[52]

B. Wang, Upper semicontinuity of random attractors for non-compact random dynamical systems, Electron. J. Differential Equations, (2009), 1–18.  Google Scholar

[53]

J. Wang, C. Li, L. Yang and M. Jia, Upper semi-continuity of random attractors and existence of invariant measures for nonlocal stochastic Swift-Hohenberg equation with multiplicative noise, J. Math. Phys., 62 (2021), 111507, 31pp. doi: 10.1063/5.0039187.  Google Scholar

[54]

B. You, The existence of a random attractor for the three dimensional damped Navier-Stokes equations with additive noise, Stoch. Anal. Appl., 35 (2017), 691-700.  doi: 10.1080/07362994.2017.1311794.  Google Scholar

[55]

S. Zhou and Z. Wang, Upper-semicontinuity of attractors for reaction-diffusion equation and damped wave equation in $\mathbb{R}^n$ perturbed by small multiplicative noises, Dynam. Systems Appl., 22 (2013), 15-31.   Google Scholar

[1]

Manil T. Mohan. Optimal control problems governed by two dimensional convective Brinkman-Forchheimer equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021020

[2]

Qiangheng Zhang, Yangrong Li. Regular attractors of asymptotically autonomous stochastic 3D Brinkman-Forchheimer equations with delays. Communications on Pure & Applied Analysis, 2021, 20 (10) : 3515-3537. doi: 10.3934/cpaa.2021117

[3]

Yonghai Wang. On the upper semicontinuity of pullback attractors with applications to plate equations. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1653-1673. doi: 10.3934/cpaa.2010.9.1653

[4]

Matheus C. Bortolan, José Manuel Uzal. Upper and weak-lower semicontinuity of pullback attractors to impulsive evolution processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3667-3692. doi: 10.3934/dcdsb.2020252

[5]

Varga K. Kalantarov, Sergey Zelik. Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2037-2054. doi: 10.3934/cpaa.2012.11.2037

[6]

Yuncheng You, Caidi Zhao, Shengfan Zhou. The existence of uniform attractors for 3D Brinkman-Forchheimer equations. Discrete & Continuous Dynamical Systems, 2012, 32 (10) : 3787-3800. doi: 10.3934/dcds.2012.32.3787

[7]

Ahmed Y. Abdallah. Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 899-916. doi: 10.3934/dcdsb.2005.5.899

[8]

María Astudillo, Marcelo M. Cavalcanti. On the upper semicontinuity of the global attractor for a porous medium type problem with large diffusion. Evolution Equations & Control Theory, 2017, 6 (1) : 1-13. doi: 10.3934/eect.2017001

[9]

Zhijian Yang, Yanan Li. Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4899-4912. doi: 10.3934/dcdsb.2019036

[10]

Micol Amar, Virginia De Cicco. Lower semicontinuity for polyconvex integrals without coercivity assumptions. Evolution Equations & Control Theory, 2014, 3 (3) : 363-372. doi: 10.3934/eect.2014.3.363

[11]

Wenjing Liu, Rong Yang, Xin-Guang Yang. Dynamics of a 3D Brinkman-Forchheimer equation with infinite delay. Communications on Pure & Applied Analysis, 2021, 20 (5) : 1907-1930. doi: 10.3934/cpaa.2021052

[12]

Linfang Liu, Xianlong Fu. Existence and upper semicontinuity of (L2, Lq) pullback attractors for a stochastic p-laplacian equation. Communications on Pure & Applied Analysis, 2017, 6 (2) : 443-474. doi: 10.3934/cpaa.2017023

[13]

Ling Xu, Jianhua Huang, Qiaozhen Ma. Upper semicontinuity of random attractors for the stochastic non-autonomous suspension bridge equation with memory. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5959-5979. doi: 10.3934/dcdsb.2019115

[14]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of attractors for non-autonomous stochastic lattice systems with random coupled coefficients. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2221-2245. doi: 10.3934/cpaa.2016035

[15]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise. Discrete & Continuous Dynamical Systems, 2017, 37 (5) : 2787-2812. doi: 10.3934/dcds.2017120

[16]

Qilin Wang, Shengji Li. Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1225-1234. doi: 10.3934/jimo.2014.10.1225

[17]

Yonghai Wang, Chengkui Zhong. Upper semicontinuity of pullback attractors for nonautonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems, 2013, 33 (7) : 3189-3209. doi: 10.3934/dcds.2013.33.3189

[18]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[19]

Timir Karmakar, Meraj Alam, G. P. Raja Sekhar. Analysis of Brinkman-Forchheimer extended Darcy's model in a fluid saturated anisotropic porous channel. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2022001

[20]

Dingshi Li, Xiaohu Wang. Asymptotic behavior of stochastic complex Ginzburg-Landau equations with deterministic non-autonomous forcing on thin domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 449-465. doi: 10.3934/dcdsb.2018181

2020 Impact Factor: 1.081

Article outline

[Back to Top]