In this work, we use the classical moment method to find a practical and simple criterion to determine if a family of linearized Dispersive equations on a periodic domain is exactly controllable and exponentially stabilizable with any given decay rate in $ H_{p}^{s}(\mathbb{T}) $ with $ s\in \mathbb{R}. $ We apply these results to prove that the linearized Smith equation, the linearized dispersion-generalized Benjamin-Ono equation, the linearized fourth-order Schrödinger equation, and the Higher-order Schrödinger equations are exactly controllable and exponentially stabilizable with any given decay rate in $ H_{p}^{s}(\mathbb{T}) $ with $ s\in \mathbb{R}. $
Citation: |
[1] | L. Abdelouhab, J. L. Bona, M. Fell and J-C. Saut, Nonlocal models for nonlinear, dispersive waves, Phys. D., 40 (1989), 360-392. doi: 10.1016/0167-2789(89)90050-X. |
[2] | A. Ankiewicz, D. J. Kedziora, A. Chowdury, U. Bandelow and N. Akhmediev, Infinite hierarchy of nonlinear Schrödinger equations and their solutions, Phys. Rev. E., 93 (2016), 012206. doi: 10.1103/physreve.93.012206. |
[3] | J. M. Ball and M. Slemrod, Nonharmonic Fourier series and the stabilization of distributed semi-linear control systems, Comm. Pure Appl. Math., 32 (1979), 555-587. doi: 10.1002/cpa.3160320405. |
[4] | R. Capistrano-Filho and M. Cavalcante, Stabilization and control for the biharmonic Schrödinger equation, Appl. Math. Optim., 84 (2021), 103-144. |
[5] | R. Capistrano-Filho and A. Gomes, Global control aspects for long waves in nonlinear dispersive media, preprint, arXiv: 2013.00921v1. |
[6] | T. Cazenave and A. Haraux, An Introduction to Semilinear Evolutions Equations, Oxford Lecture Series in Mathematics and its Applications, 13. The Clarendon Press, Oxford University Press, New York, 1998. |
[7] | J.-M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, vol. 136, Amer. Math. Soc., 2007. doi: 10.1090/surv/136. |
[8] | J.-M. Coron and E. Crépeau, Exact boundary controllability of a nonlinear KdV equation with a critical length, J. Eur. Math. Soc., 6 (2004), 367-398. |
[9] | B. Dehman, P. Gérard and G. Lebeau, Stabilization and control for the nonlinear Schr$\ddot{o}$dinger equation on a compact surface, Math. Z., 254 (2006), 729-749. doi: 10.1007/s00209-006-0005-3. |
[10] | G. Fibich, B. Ilan and G. Papanicolaou, Self-focusing with fourth-order dispersion, SIAM J. Appl. Math., 62 (2002), 1437-1462. doi: 10.1137/S0036139901387241. |
[11] | C. Flores, Control and stability of the linearized dispersion-generalized Benjamin-Ono equation on a periodic domain, Math. Control Signals Systems, 30 (2018), Art. 13, 16pp. doi: 10.1007/s00498-018-0219-z. |
[12] | C. Flores, S. Oh and D. Smith, Stabilization of dispersion-generalized Benjamin-Ono, Nonlinear Dispersive Waves and Fluids, Contemp. Math., 725 (2019), 111-136. doi: 10.1090/conm/725/14548. |
[13] | C. Heil, A Basis Theory Primer, Expanded Edition, Applied and Numerical Harmonic Analysis, Birkhauser, Birkhäuser/Springer, New York, 2011. doi: 10.1007/978-0-8176-4687-5. |
[14] | Z. Huo and Y. Jia, A refined well-posedness for the fourth-order nonlinear Schrödinger equation related to the vortex filament, Com. Part. Dif. Eq., 32 (2007), 1493-1510. doi: 10.1080/03605300701629385. |
[15] | A. E. Ingham, Some trigonometrical inequalities with applications in the theory of series, Math. Z., 41 (1936), 367-379. doi: 10.1007/BF01180426. |
[16] | R. J. Jr. Iorio, KdV, BO and friends in weighted Sobolev spaces, Functional-Analytic Methods for Partial Differential Equations (Tokyo, 1989), Lecture Notes in Math., Springer, Berlin, 1450 (1990), 104–121. doi: 10.1007/BFb0084901. |
[17] | R. J. Jr. Iorio and V. Magalhães, Fourier Analysis and Partial Differential Equations, Cambrige Universiy Press 2001. doi: 10.1017/CBO9780511623745. |
[18] | V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: Fourth order nonlinear Schrödinger-type equations, Phys. Rev. E, 53 (1996), 1336-1339. |
[19] | V. I. Karpman and A. G. Shagalov, Stability of soliton described by nonlinear Schrödinger type equations with higher-order dispersion, Physica D, 144 (2000), 194-210. doi: 10.1016/S0167-2789(00)00078-6. |
[20] | V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer Monographs in Mathematics 2005. |
[21] | C. Laurent, Internal control of the Schrödinger equation, Math. Control Relat. Fields, 4 (2014), 161-186. doi: 10.3934/mcrf.2014.4.161. |
[22] | C. Laurent, Global controllability and stabilization for the nonlinear Schrödinger equation on an interval, ESAIM Control Optm. Cal. Var., 16 (2010), 356-379. doi: 10.1051/cocv/2009001. |
[23] | C. Laurent, F. Linares and L. Rosier, Control and stabilization of the Benjamin-Ono equation in $L^{2}(\mathbb{T})$, Arch. Rational Mech. Anal., 218 (2015), 1531-1575. doi: 10.1007/s00205-015-0887-5. |
[24] | C. Laurent, L. Rosier and B.-Y. Zhang, Control and stabilization of the Korteweg-de Vries equation on a periodic domain, Comm. Partial Differential Equations, 35 (2010), 707-744. doi: 10.1080/03605300903585336. |
[25] | F. Linares and J. H. Ortega, On the controllability and stabilization of the linearized Benjamin-Ono equation, ESAIM: Cont. Optm. Cal. Var., 11 (2005), 204-218. doi: 10.1051/cocv:2005002. |
[26] | F. Linares and L. Rosier, Control and stabilization of the Benjamin-Ono equation on a periodic domain, Trans. Amer. Math. Soc., 367 (2015), 4595-4626. doi: 10.1090/S0002-9947-2015-06086-3. |
[27] | K. Liu, Locally distributed control and damping for the conservative systems, SIAM J. Control Optim., 35 (1997), 1574-1590. doi: 10.1137/S0363012995284928. |
[28] | G. P. Menzala, C. F. Vasconcellos and E. Zuazua, Stabilization of the Korteweg-de Vries equation with localized damping, Quart. Appl. Math., 60 (2002), 111-129. doi: 10.1090/qam/1878262. |
[29] | S. Micu, J. Ortega, L. Rosier and B-Y. Zhang, Control and stabilization of a family of Boussinesq systems, Discrete Contin. Dyn. Syst., 24 (2009), 273-313. doi: 10.3934/dcds.2009.24.273. |
[30] | P. D. Miller, P. A. Perry, J.-C. Saut and C. Sulem, Nonlinear Dispersive Partial Differential Equations and Inverse scattering, Fields Institute Comm. 83, Springer, 2019. |
[31] | M. Panthee and F. Vielma Leal, On the controllability and stabilization of the linearized Benjamin equation on a periodic domain, Nonlinear Anal. Real World Appl., 51 (2020), 102978. doi: 10.1016/j.nonrwa.2019.102978. |
[32] | M. Panthee and F. Vielma Leal, On the controllability and stabilization of the Benjamin equation on a periodic domain, Ann. Inst. H. Poincaré Anal. Non Linéaire, 38 (2021), 1605-1652. doi: 10.1016/j.anihpc.2020.12.004. |
[33] | A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1. |
[34] | L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var., 2 (1997), 33-55. doi: 10.1051/cocv:1997102. |
[35] | L. Rosier and B.-Y. Zhang, Local exact controllability and stabilizability of the nonlinear Schr$\ddot{o}$dinger equation on a bounded interval, SIAM J. Control Optim., 48 (2009), 972-992. doi: 10.1137/070709578. |
[36] | L. Rosier and B.-Y. Zhang, Control and stabilization of the nonlinear Schr$\ddot{o}$dinger equation on rectangles, Math. Models Methods Appl. Sci., 20 (2010), 2293-2347. doi: 10.1142/S0218202510004933. |
[37] | L. Rosier and B.-Y. Zhang, Global stabilization of the generalized Korteweg-de Vries equation, SIAM J. Control Optim., 45 (2006), 927-956. doi: 10.1137/050631409. |
[38] | W. Rudin, Functional Analysis, 2$^nd$ edition, McGraw-Hill, Inc., New York, 1991. |
[39] | D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 20 (1978), 639-739. doi: 10.1137/1020095. |
[40] | D. L. Russell and B.-Y. Zhang, Controllability and stabilizability of the thrid-order linear dispersion equation on a periodic domain, SIAM J. Control Optim., 31 (1993), 659-676. doi: 10.1137/0331030. |
[41] | D. L. Russell and B.-Y. Zhang, Exact controllability and stabilizability of the Korteweg-de Vries equation, Trans. Amer. Math. Soc., 348 (1996), 3643-3672. doi: 10.1090/S0002-9947-96-01672-8. |
[42] | V. I. Shrira and V. V. Voronovich, Nonlinear dynamics of vorticity waves in the coastal zone, J. Fluid Mech., 326 (1996), 181-203. doi: 10.1017/S0022112096008282. |
[43] | M. Slemrod, A note on complete controllability and stabilizability for linear control systems in Hilbert space, SIAM J. Control, 12 (1974), 500-508. doi: 10.1137/0312038. |
[44] | R. Smith, Nonlinear Kelvin and continental-shelf waves, J. Fluid Mech., 57 (1972), 379-391. |
[45] | B.-Y. Zhang, Exact boundary controllability of the Korteweg-de Vries equation, SIAM J. Control Optim., 37 (1999), 543-565. doi: 10.1137/S0363012997327501. |
Dispersion of
Dispersion of
Dispersion of