doi: 10.3934/eect.2021062
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Two simple criterion to obtain exact controllability and stabilization of a linear family of dispersive PDE's on a periodic domain

IMECC-UNICAMP, Rua Sérgio Buarque de Holanda, 651, Cidade Universitária, 13083-859, Campinas-SP, Brazil

* Corresponding author

Received  August 2021 Early access December 2021

In this work, we use the classical moment method to find a practical and simple criterion to determine if a family of linearized Dispersive equations on a periodic domain is exactly controllable and exponentially stabilizable with any given decay rate in $ H_{p}^{s}(\mathbb{T}) $ with $ s\in \mathbb{R}. $ We apply these results to prove that the linearized Smith equation, the linearized dispersion-generalized Benjamin-Ono equation, the linearized fourth-order Schrödinger equation, and the Higher-order Schrödinger equations are exactly controllable and exponentially stabilizable with any given decay rate in $ H_{p}^{s}(\mathbb{T}) $ with $ s\in \mathbb{R}. $

Citation: Francisco J. Vielma leal, Ademir Pastor. Two simple criterion to obtain exact controllability and stabilization of a linear family of dispersive PDE's on a periodic domain. Evolution Equations & Control Theory, doi: 10.3934/eect.2021062
References:
[1]

L. AbdelouhabJ. L. BonaM. Fell and J-C. Saut, Nonlocal models for nonlinear, dispersive waves, Phys. D., 40 (1989), 360-392.  doi: 10.1016/0167-2789(89)90050-X.  Google Scholar

[2]

A. AnkiewiczD. J. KedzioraA. ChowduryU. Bandelow and N. Akhmediev, Infinite hierarchy of nonlinear Schrödinger equations and their solutions, Phys. Rev. E., 93 (2016), 012206.  doi: 10.1103/physreve.93.012206.  Google Scholar

[3]

J. M. Ball and M. Slemrod, Nonharmonic Fourier series and the stabilization of distributed semi-linear control systems, Comm. Pure Appl. Math., 32 (1979), 555-587.  doi: 10.1002/cpa.3160320405.  Google Scholar

[4]

R. Capistrano-Filho and M. Cavalcante, Stabilization and control for the biharmonic Schrödinger equation, Appl. Math. Optim., 84 (2021), 103-144.   Google Scholar

[5]

R. Capistrano-Filho and A. Gomes, Global control aspects for long waves in nonlinear dispersive media, preprint, arXiv: 2013.00921v1. Google Scholar

[6]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolutions Equations, Oxford Lecture Series in Mathematics and its Applications, 13. The Clarendon Press, Oxford University Press, New York, 1998.  Google Scholar

[7]

J.-M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, vol. 136, Amer. Math. Soc., 2007. doi: 10.1090/surv/136.  Google Scholar

[8]

J.-M. Coron and E. Crépeau, Exact boundary controllability of a nonlinear KdV equation with a critical length, J. Eur. Math. Soc., 6 (2004), 367-398.   Google Scholar

[9]

B. DehmanP. Gérard and G. Lebeau, Stabilization and control for the nonlinear Schr$\ddot{o}$dinger equation on a compact surface, Math. Z., 254 (2006), 729-749.  doi: 10.1007/s00209-006-0005-3.  Google Scholar

[10]

G. FibichB. Ilan and G. Papanicolaou, Self-focusing with fourth-order dispersion, SIAM J. Appl. Math., 62 (2002), 1437-1462.  doi: 10.1137/S0036139901387241.  Google Scholar

[11]

C. Flores, Control and stability of the linearized dispersion-generalized Benjamin-Ono equation on a periodic domain, Math. Control Signals Systems, 30 (2018), Art. 13, 16pp. doi: 10.1007/s00498-018-0219-z.  Google Scholar

[12]

C. FloresS. Oh and D. Smith, Stabilization of dispersion-generalized Benjamin-Ono, Nonlinear Dispersive Waves and Fluids, Contemp. Math., 725 (2019), 111-136.  doi: 10.1090/conm/725/14548.  Google Scholar

[13]

C. Heil, A Basis Theory Primer, Expanded Edition, Applied and Numerical Harmonic Analysis, Birkhauser, Birkhäuser/Springer, New York, 2011. doi: 10.1007/978-0-8176-4687-5.  Google Scholar

[14]

Z. Huo and Y. Jia, A refined well-posedness for the fourth-order nonlinear Schrödinger equation related to the vortex filament, Com. Part. Dif. Eq., 32 (2007), 1493-1510.  doi: 10.1080/03605300701629385.  Google Scholar

[15]

A. E. Ingham, Some trigonometrical inequalities with applications in the theory of series, Math. Z., 41 (1936), 367-379.  doi: 10.1007/BF01180426.  Google Scholar

[16]

R. J. Jr. Iorio, KdV, BO and friends in weighted Sobolev spaces, Functional-Analytic Methods for Partial Differential Equations (Tokyo, 1989), Lecture Notes in Math., Springer, Berlin, 1450 (1990), 104–121. doi: 10.1007/BFb0084901.  Google Scholar

[17]

R. J. Jr. Iorio and V. Magalhães, Fourier Analysis and Partial Differential Equations, Cambrige Universiy Press 2001. doi: 10.1017/CBO9780511623745.  Google Scholar

[18]

V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: Fourth order nonlinear Schrödinger-type equations, Phys. Rev. E, 53 (1996), 1336-1339.   Google Scholar

[19]

V. I. Karpman and A. G. Shagalov, Stability of soliton described by nonlinear Schrödinger type equations with higher-order dispersion, Physica D, 144 (2000), 194-210.  doi: 10.1016/S0167-2789(00)00078-6.  Google Scholar

[20]

V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer Monographs in Mathematics 2005.  Google Scholar

[21]

C. Laurent, Internal control of the Schrödinger equation, Math. Control Relat. Fields, 4 (2014), 161-186.  doi: 10.3934/mcrf.2014.4.161.  Google Scholar

[22]

C. Laurent, Global controllability and stabilization for the nonlinear Schrödinger equation on an interval, ESAIM Control Optm. Cal. Var., 16 (2010), 356-379.  doi: 10.1051/cocv/2009001.  Google Scholar

[23]

C. LaurentF. Linares and L. Rosier, Control and stabilization of the Benjamin-Ono equation in $L^{2}(\mathbb{T})$, Arch. Rational Mech. Anal., 218 (2015), 1531-1575.  doi: 10.1007/s00205-015-0887-5.  Google Scholar

[24]

C. LaurentL. Rosier and B.-Y. Zhang, Control and stabilization of the Korteweg-de Vries equation on a periodic domain, Comm. Partial Differential Equations, 35 (2010), 707-744.  doi: 10.1080/03605300903585336.  Google Scholar

[25]

F. Linares and J. H. Ortega, On the controllability and stabilization of the linearized Benjamin-Ono equation, ESAIM: Cont. Optm. Cal. Var., 11 (2005), 204-218.  doi: 10.1051/cocv:2005002.  Google Scholar

[26]

F. Linares and L. Rosier, Control and stabilization of the Benjamin-Ono equation on a periodic domain, Trans. Amer. Math. Soc., 367 (2015), 4595-4626.  doi: 10.1090/S0002-9947-2015-06086-3.  Google Scholar

[27]

K. Liu, Locally distributed control and damping for the conservative systems, SIAM J. Control Optim., 35 (1997), 1574-1590.  doi: 10.1137/S0363012995284928.  Google Scholar

[28]

G. P. MenzalaC. F. Vasconcellos and E. Zuazua, Stabilization of the Korteweg-de Vries equation with localized damping, Quart. Appl. Math., 60 (2002), 111-129.  doi: 10.1090/qam/1878262.  Google Scholar

[29]

S. MicuJ. OrtegaL. Rosier and B-Y. Zhang, Control and stabilization of a family of Boussinesq systems, Discrete Contin. Dyn. Syst., 24 (2009), 273-313.  doi: 10.3934/dcds.2009.24.273.  Google Scholar

[30]

P. D. Miller, P. A. Perry, J.-C. Saut and C. Sulem, Nonlinear Dispersive Partial Differential Equations and Inverse scattering, Fields Institute Comm. 83, Springer, 2019. Google Scholar

[31]

M. Panthee and F. Vielma Leal, On the controllability and stabilization of the linearized Benjamin equation on a periodic domain, Nonlinear Anal. Real World Appl., 51 (2020), 102978.  doi: 10.1016/j.nonrwa.2019.102978.  Google Scholar

[32]

M. Panthee and F. Vielma Leal, On the controllability and stabilization of the Benjamin equation on a periodic domain, Ann. Inst. H. Poincaré Anal. Non Linéaire, 38 (2021), 1605-1652.  doi: 10.1016/j.anihpc.2020.12.004.  Google Scholar

[33]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[34]

L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var., 2 (1997), 33-55.  doi: 10.1051/cocv:1997102.  Google Scholar

[35]

L. Rosier and B.-Y. Zhang, Local exact controllability and stabilizability of the nonlinear Schr$\ddot{o}$dinger equation on a bounded interval, SIAM J. Control Optim., 48 (2009), 972-992.  doi: 10.1137/070709578.  Google Scholar

[36]

L. Rosier and B.-Y. Zhang, Control and stabilization of the nonlinear Schr$\ddot{o}$dinger equation on rectangles, Math. Models Methods Appl. Sci., 20 (2010), 2293-2347.  doi: 10.1142/S0218202510004933.  Google Scholar

[37]

L. Rosier and B.-Y. Zhang, Global stabilization of the generalized Korteweg-de Vries equation, SIAM J. Control Optim., 45 (2006), 927-956.  doi: 10.1137/050631409.  Google Scholar

[38]

W. Rudin, Functional Analysis, 2$^nd$ edition, McGraw-Hill, Inc., New York, 1991.  Google Scholar

[39]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 20 (1978), 639-739.  doi: 10.1137/1020095.  Google Scholar

[40]

D. L. Russell and B.-Y. Zhang, Controllability and stabilizability of the thrid-order linear dispersion equation on a periodic domain, SIAM J. Control Optim., 31 (1993), 659-676.  doi: 10.1137/0331030.  Google Scholar

[41]

D. L. Russell and B.-Y. Zhang, Exact controllability and stabilizability of the Korteweg-de Vries equation, Trans. Amer. Math. Soc., 348 (1996), 3643-3672.  doi: 10.1090/S0002-9947-96-01672-8.  Google Scholar

[42]

V. I. Shrira and V. V. Voronovich, Nonlinear dynamics of vorticity waves in the coastal zone, J. Fluid Mech., 326 (1996), 181-203.  doi: 10.1017/S0022112096008282.  Google Scholar

[43]

M. Slemrod, A note on complete controllability and stabilizability for linear control systems in Hilbert space, SIAM J. Control, 12 (1974), 500-508.  doi: 10.1137/0312038.  Google Scholar

[44]

R. Smith, Nonlinear Kelvin and continental-shelf waves, J. Fluid Mech., 57 (1972), 379-391.   Google Scholar

[45]

B.-Y. Zhang, Exact boundary controllability of the Korteweg-de Vries equation, SIAM J. Control Optim., 37 (1999), 543-565.  doi: 10.1137/S0363012997327501.  Google Scholar

show all references

References:
[1]

L. AbdelouhabJ. L. BonaM. Fell and J-C. Saut, Nonlocal models for nonlinear, dispersive waves, Phys. D., 40 (1989), 360-392.  doi: 10.1016/0167-2789(89)90050-X.  Google Scholar

[2]

A. AnkiewiczD. J. KedzioraA. ChowduryU. Bandelow and N. Akhmediev, Infinite hierarchy of nonlinear Schrödinger equations and their solutions, Phys. Rev. E., 93 (2016), 012206.  doi: 10.1103/physreve.93.012206.  Google Scholar

[3]

J. M. Ball and M. Slemrod, Nonharmonic Fourier series and the stabilization of distributed semi-linear control systems, Comm. Pure Appl. Math., 32 (1979), 555-587.  doi: 10.1002/cpa.3160320405.  Google Scholar

[4]

R. Capistrano-Filho and M. Cavalcante, Stabilization and control for the biharmonic Schrödinger equation, Appl. Math. Optim., 84 (2021), 103-144.   Google Scholar

[5]

R. Capistrano-Filho and A. Gomes, Global control aspects for long waves in nonlinear dispersive media, preprint, arXiv: 2013.00921v1. Google Scholar

[6]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolutions Equations, Oxford Lecture Series in Mathematics and its Applications, 13. The Clarendon Press, Oxford University Press, New York, 1998.  Google Scholar

[7]

J.-M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, vol. 136, Amer. Math. Soc., 2007. doi: 10.1090/surv/136.  Google Scholar

[8]

J.-M. Coron and E. Crépeau, Exact boundary controllability of a nonlinear KdV equation with a critical length, J. Eur. Math. Soc., 6 (2004), 367-398.   Google Scholar

[9]

B. DehmanP. Gérard and G. Lebeau, Stabilization and control for the nonlinear Schr$\ddot{o}$dinger equation on a compact surface, Math. Z., 254 (2006), 729-749.  doi: 10.1007/s00209-006-0005-3.  Google Scholar

[10]

G. FibichB. Ilan and G. Papanicolaou, Self-focusing with fourth-order dispersion, SIAM J. Appl. Math., 62 (2002), 1437-1462.  doi: 10.1137/S0036139901387241.  Google Scholar

[11]

C. Flores, Control and stability of the linearized dispersion-generalized Benjamin-Ono equation on a periodic domain, Math. Control Signals Systems, 30 (2018), Art. 13, 16pp. doi: 10.1007/s00498-018-0219-z.  Google Scholar

[12]

C. FloresS. Oh and D. Smith, Stabilization of dispersion-generalized Benjamin-Ono, Nonlinear Dispersive Waves and Fluids, Contemp. Math., 725 (2019), 111-136.  doi: 10.1090/conm/725/14548.  Google Scholar

[13]

C. Heil, A Basis Theory Primer, Expanded Edition, Applied and Numerical Harmonic Analysis, Birkhauser, Birkhäuser/Springer, New York, 2011. doi: 10.1007/978-0-8176-4687-5.  Google Scholar

[14]

Z. Huo and Y. Jia, A refined well-posedness for the fourth-order nonlinear Schrödinger equation related to the vortex filament, Com. Part. Dif. Eq., 32 (2007), 1493-1510.  doi: 10.1080/03605300701629385.  Google Scholar

[15]

A. E. Ingham, Some trigonometrical inequalities with applications in the theory of series, Math. Z., 41 (1936), 367-379.  doi: 10.1007/BF01180426.  Google Scholar

[16]

R. J. Jr. Iorio, KdV, BO and friends in weighted Sobolev spaces, Functional-Analytic Methods for Partial Differential Equations (Tokyo, 1989), Lecture Notes in Math., Springer, Berlin, 1450 (1990), 104–121. doi: 10.1007/BFb0084901.  Google Scholar

[17]

R. J. Jr. Iorio and V. Magalhães, Fourier Analysis and Partial Differential Equations, Cambrige Universiy Press 2001. doi: 10.1017/CBO9780511623745.  Google Scholar

[18]

V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: Fourth order nonlinear Schrödinger-type equations, Phys. Rev. E, 53 (1996), 1336-1339.   Google Scholar

[19]

V. I. Karpman and A. G. Shagalov, Stability of soliton described by nonlinear Schrödinger type equations with higher-order dispersion, Physica D, 144 (2000), 194-210.  doi: 10.1016/S0167-2789(00)00078-6.  Google Scholar

[20]

V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer Monographs in Mathematics 2005.  Google Scholar

[21]

C. Laurent, Internal control of the Schrödinger equation, Math. Control Relat. Fields, 4 (2014), 161-186.  doi: 10.3934/mcrf.2014.4.161.  Google Scholar

[22]

C. Laurent, Global controllability and stabilization for the nonlinear Schrödinger equation on an interval, ESAIM Control Optm. Cal. Var., 16 (2010), 356-379.  doi: 10.1051/cocv/2009001.  Google Scholar

[23]

C. LaurentF. Linares and L. Rosier, Control and stabilization of the Benjamin-Ono equation in $L^{2}(\mathbb{T})$, Arch. Rational Mech. Anal., 218 (2015), 1531-1575.  doi: 10.1007/s00205-015-0887-5.  Google Scholar

[24]

C. LaurentL. Rosier and B.-Y. Zhang, Control and stabilization of the Korteweg-de Vries equation on a periodic domain, Comm. Partial Differential Equations, 35 (2010), 707-744.  doi: 10.1080/03605300903585336.  Google Scholar

[25]

F. Linares and J. H. Ortega, On the controllability and stabilization of the linearized Benjamin-Ono equation, ESAIM: Cont. Optm. Cal. Var., 11 (2005), 204-218.  doi: 10.1051/cocv:2005002.  Google Scholar

[26]

F. Linares and L. Rosier, Control and stabilization of the Benjamin-Ono equation on a periodic domain, Trans. Amer. Math. Soc., 367 (2015), 4595-4626.  doi: 10.1090/S0002-9947-2015-06086-3.  Google Scholar

[27]

K. Liu, Locally distributed control and damping for the conservative systems, SIAM J. Control Optim., 35 (1997), 1574-1590.  doi: 10.1137/S0363012995284928.  Google Scholar

[28]

G. P. MenzalaC. F. Vasconcellos and E. Zuazua, Stabilization of the Korteweg-de Vries equation with localized damping, Quart. Appl. Math., 60 (2002), 111-129.  doi: 10.1090/qam/1878262.  Google Scholar

[29]

S. MicuJ. OrtegaL. Rosier and B-Y. Zhang, Control and stabilization of a family of Boussinesq systems, Discrete Contin. Dyn. Syst., 24 (2009), 273-313.  doi: 10.3934/dcds.2009.24.273.  Google Scholar

[30]

P. D. Miller, P. A. Perry, J.-C. Saut and C. Sulem, Nonlinear Dispersive Partial Differential Equations and Inverse scattering, Fields Institute Comm. 83, Springer, 2019. Google Scholar

[31]

M. Panthee and F. Vielma Leal, On the controllability and stabilization of the linearized Benjamin equation on a periodic domain, Nonlinear Anal. Real World Appl., 51 (2020), 102978.  doi: 10.1016/j.nonrwa.2019.102978.  Google Scholar

[32]

M. Panthee and F. Vielma Leal, On the controllability and stabilization of the Benjamin equation on a periodic domain, Ann. Inst. H. Poincaré Anal. Non Linéaire, 38 (2021), 1605-1652.  doi: 10.1016/j.anihpc.2020.12.004.  Google Scholar

[33]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[34]

L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var., 2 (1997), 33-55.  doi: 10.1051/cocv:1997102.  Google Scholar

[35]

L. Rosier and B.-Y. Zhang, Local exact controllability and stabilizability of the nonlinear Schr$\ddot{o}$dinger equation on a bounded interval, SIAM J. Control Optim., 48 (2009), 972-992.  doi: 10.1137/070709578.  Google Scholar

[36]

L. Rosier and B.-Y. Zhang, Control and stabilization of the nonlinear Schr$\ddot{o}$dinger equation on rectangles, Math. Models Methods Appl. Sci., 20 (2010), 2293-2347.  doi: 10.1142/S0218202510004933.  Google Scholar

[37]

L. Rosier and B.-Y. Zhang, Global stabilization of the generalized Korteweg-de Vries equation, SIAM J. Control Optim., 45 (2006), 927-956.  doi: 10.1137/050631409.  Google Scholar

[38]

W. Rudin, Functional Analysis, 2$^nd$ edition, McGraw-Hill, Inc., New York, 1991.  Google Scholar

[39]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 20 (1978), 639-739.  doi: 10.1137/1020095.  Google Scholar

[40]

D. L. Russell and B.-Y. Zhang, Controllability and stabilizability of the thrid-order linear dispersion equation on a periodic domain, SIAM J. Control Optim., 31 (1993), 659-676.  doi: 10.1137/0331030.  Google Scholar

[41]

D. L. Russell and B.-Y. Zhang, Exact controllability and stabilizability of the Korteweg-de Vries equation, Trans. Amer. Math. Soc., 348 (1996), 3643-3672.  doi: 10.1090/S0002-9947-96-01672-8.  Google Scholar

[42]

V. I. Shrira and V. V. Voronovich, Nonlinear dynamics of vorticity waves in the coastal zone, J. Fluid Mech., 326 (1996), 181-203.  doi: 10.1017/S0022112096008282.  Google Scholar

[43]

M. Slemrod, A note on complete controllability and stabilizability for linear control systems in Hilbert space, SIAM J. Control, 12 (1974), 500-508.  doi: 10.1137/0312038.  Google Scholar

[44]

R. Smith, Nonlinear Kelvin and continental-shelf waves, J. Fluid Mech., 57 (1972), 379-391.   Google Scholar

[45]

B.-Y. Zhang, Exact boundary controllability of the Korteweg-de Vries equation, SIAM J. Control Optim., 37 (1999), 543-565.  doi: 10.1137/S0363012997327501.  Google Scholar

Figure 1.  Dispersion of $ \lambda_{k} $'s for KdV, Benjamin-Ono and Benjamin equations
Figure 2.  Dispersion of $ \lambda_{k} $'s for Schrödinger equation
Figure 3.  Dispersion of $ \lambda_{k} $'s for the Smith and fourth-order Schrödinger equations with $ \mu>0. $
[1]

Jerry Bona, Hongqiu Chen. Well-posedness for regularized nonlinear dispersive wave equations. Discrete & Continuous Dynamical Systems, 2009, 23 (4) : 1253-1275. doi: 10.3934/dcds.2009.23.1253

[2]

Luc Molinet, Francis Ribaud. On global well-posedness for a class of nonlocal dispersive wave equations. Discrete & Continuous Dynamical Systems, 2006, 15 (2) : 657-668. doi: 10.3934/dcds.2006.15.657

[3]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete & Continuous Dynamical Systems, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

[4]

Charlotte Rodriguez. Networks of geometrically exact beams: Well-posedness and stabilization. Mathematical Control & Related Fields, 2022, 12 (1) : 49-80. doi: 10.3934/mcrf.2021002

[5]

Yassine El Gantouh, Said Hadd. Well-posedness and approximate controllability of neutral network systems. Networks & Heterogeneous Media, 2021, 16 (4) : 569-589. doi: 10.3934/nhm.2021018

[6]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete & Continuous Dynamical Systems, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[7]

Massimo Cicognani, Michael Reissig. Well-posedness for degenerate Schrödinger equations. Evolution Equations & Control Theory, 2014, 3 (1) : 15-33. doi: 10.3934/eect.2014.3.15

[8]

Hongqiu Chen. Well-posedness for a higher-order, nonlinear, dispersive equation on a quarter plane. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 397-429. doi: 10.3934/dcds.2018019

[9]

Louis Tebou. Well-posedness and stabilization of an Euler-Bernoulli equation with a localized nonlinear dissipation involving the $p$-Laplacian. Discrete & Continuous Dynamical Systems, 2012, 32 (6) : 2315-2337. doi: 10.3934/dcds.2012.32.2315

[10]

Hongjun Gao, Chengfeng Sun. Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3053-3073. doi: 10.3934/dcdsb.2016087

[11]

Jean-Daniel Djida, Arran Fernandez, Iván Area. Well-posedness results for fractional semi-linear wave equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 569-597. doi: 10.3934/dcdsb.2019255

[12]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[13]

Yong Zhou, Jishan Fan. Local well-posedness for the ideal incompressible density dependent magnetohydrodynamic equations. Communications on Pure & Applied Analysis, 2010, 9 (3) : 813-818. doi: 10.3934/cpaa.2010.9.813

[14]

Junxiong Jia, Jigen Peng, Kexue Li. Well-posedness of abstract distributed-order fractional diffusion equations. Communications on Pure & Applied Analysis, 2014, 13 (2) : 605-621. doi: 10.3934/cpaa.2014.13.605

[15]

Giuseppe Floridia. Well-posedness for a class of nonlinear degenerate parabolic equations. Conference Publications, 2015, 2015 (special) : 455-463. doi: 10.3934/proc.2015.0455

[16]

Daoyuan Fang, Ruizhao Zi. On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3517-3541. doi: 10.3934/dcds.2013.33.3517

[17]

Qunyi Bie, Qiru Wang, Zheng-An Yao. On the well-posedness of the inviscid Boussinesq equations in the Besov-Morrey spaces. Kinetic & Related Models, 2015, 8 (3) : 395-411. doi: 10.3934/krm.2015.8.395

[18]

Can Li, Weihua Deng, Lijing Zhao. Well-posedness and numerical algorithm for the tempered fractional differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1989-2015. doi: 10.3934/dcdsb.2019026

[19]

Hyungjin Huh, Bora Moon. Low regularity well-posedness for Gross-Neveu equations. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1903-1913. doi: 10.3934/cpaa.2015.14.1903

[20]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations & Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (73)
  • HTML views (49)
  • Cited by (0)

Other articles
by authors

[Back to Top]