\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Continuous dependence and optimal control of a dynamic elastic-viscoplastic contact problem with non-monotone boundary conditions

  • *Corresponding author: Xilu Wang

    *Corresponding author: Xilu Wang 
Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we consider continuous dependence and optimal control of a dynamic elastic-viscoplastic contact model with Clarke subdifferential boundary conditions. Since the constitutive law of elastic-viscoplastic materials has an implicit expression of the stress field, the weak form of the model is an evolutionary hemivariational inequality coupled with an integral equation. By providing some equivalent weak formulations, we prove the continuous dependence of the solution on external forces and initial conditions in the weak topologies. Finally, the existence of optimal solutions to a boundary optimal control problem is established.

    Mathematics Subject Classification: Primary: 47J20, 47J22, 49J40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] M. BarboteuA. Matei and M. Sofonea, On the behavior of the solution of a viscoplastic contact problem, Quarterly of Applied Mathematics, 72 (2014), 625-647.  doi: 10.1090/S0033-569X-2014-01345-4.
    [2] A. Benraouda and M. Sofonea, A convergence result for history-dependent quasivariational inequalities, Applicable Analysis, 96 (2017), 2635-2651.  doi: 10.1080/00036811.2016.1236920.
    [3] X. ChengS. MigórskiA. Ochal and M. Sofonea, Analysis of two quasistatic history-dependent contact models, Discrete and Continuous Dynamical Systems-Series B, 19 (2014), 2425-2445.  doi: 10.3934/dcdsb.2014.19.2425.
    [4] X. Cheng and X. Wang, Numerical analysis of a history-dependent variational-hemivariational inequality for a viscoplastic contact problem, International Journal of Numerical Analysis and Modeling, 17 (2020), 820-838. 
    [5] X. ChengQ. XiaoS. Migórski and A. Ochal, Error estimate for quasistatic history-dependent contact model, Computers and Mathematics with Applications, 77 (2019), 2943-2952.  doi: 10.1016/j.camwa.2018.08.058.
    [6] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
    [7] Z. DenkowskiS. Migórski and A. Ochal, Optimal control for a class of mechanical thermoviscoelastic frictional contact problems, Control and Cybernetics, 36 (2007), 611-632. 
    [8] Z. DenkowskiS. Migórski and A. Ochal, A class of optimal control problems for piezoelectric frictional contact models, Nonlinear Analysis: Real World Applications, 12 (2011), 1883-1895.  doi: 10.1016/j.nonrwa.2010.12.006.
    [9] C. Fang and W. Han, Well-posedness and optimal control of a hemivariational inequality for nonstationary Stokes fluid flow, Discrete and Continuous Dynamical Systems, 36 (2016), 5369-5386.  doi: 10.3934/dcds.2016036.
    [10] D. HanW. HanS. Migórski and J. Zhao, Convergence analysis of numerical solutions for optimal control of variational-hemivariational inequalities, Applied Mathematics Letters, 105 (2020), 106327.  doi: 10.1016/j.aml.2020.106327.
    [11] J. Han and H. Zeng, Variational analysis and optimal control of dynamic unilateral contact models with friction, Journal of Mathematical Analysis and Applications, 473 (2019), 712-748.  doi: 10.1016/j.jmaa.2018.12.068.
    [12] W. HanS. Migórski and M. Sofonea, A class of variational-hemivariational inequalities with applications to frictional contact problems, SIAM Journal on Mathematical Analysis, 46 (2014), 3891-3912.  doi: 10.1137/140963248.
    [13] W. Han and M. Sofonea, Numerical analysis of hemivariational inequalities in contact mechanics, Acta Numerica, 28 (2019), 175-286.  doi: 10.1017/S0962492919000023.
    [14] W. HanM. Sofonea and M. Barboteu, Numerical analysis of elliptic hemivariational inequalities, SIAM Journal on Numerical Analysis, 55 (2017), 640-663.  doi: 10.1137/16M1072085.
    [15] C. Jiang and B. Zeng, Continuous dependence and optimal control for a class of variational-hemivariational inequalities, Applied Mathematics and Optimization, 82 (2020), 637-656.  doi: 10.1007/s00245-018-9543-4.
    [16] A. Kulig, A quasistatic viscoplastic contact problem with normal compliance, unilateral constraint, memory term and friction, Nonlinear Analysis: Real World Applications, 33 (2017), 226-236.  doi: 10.1016/j.nonrwa.2016.06.007.
    [17] A. Kulig, Variational-hemivariational approach to quasistatic viscoplastic contact problem with normal compliance, unilateral constraint, memory term, friction and damage, Nonlinear Analysis: Real World Applications, 44 (2018), 401-416.  doi: 10.1016/j.nonrwa.2018.05.014.
    [18] Y. Li, A dynamic contact problem for elastic-viscoplastic materials with normal damped response and damage, Applicable Analysis, 95 (2016), 2485-2500.  doi: 10.1080/00036811.2015.1094797.
    [19] S. Migórski, Optimal control of history-dependent evolution inclusions with applocations to frictional contact, Journal of Optimization Theory and Applications, 185 (2020), 574-596.  doi: 10.1007/s10957-020-01659-0.
    [20] S. MigórskiA. Ochal and M. Sofonea, Analysis of a dynamic elastic-viscoplastic contact problem with friction, Discrete and Continuous Dynamical Systems-Series B, 10 (2008), 887-902.  doi: 10.3934/dcdsb.2008.10.887.
    [21] S. MigórskiA. Ochal and M. Sofonea, Integrodifferential hemivariational inequalities with applications to viscoelastic frictional contact, Mathematical Models and Methods in Applied Sciences, 18 (2008), 271-290.  doi: 10.1142/S021820250800267X.
    [22] S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, in: Advances in Mechanics and Mathematics, vol. 26, Springer, New York, 2013. doi: 10.1007/978-1-4614-4232-5.
    [23] Z. Peng, P. Gamorski and S. Migórski, Boundary optimal control of a dynamic frictional contact problem, ZAMM Journal of Applied Mathematics and Mechanics: Zeitschrift fur Angewandte Mathematik und Mechanik, 100 (2020), e201900144. doi: 10.1002/zamm.201900144.
    [24] M. Selmani and L. Selmani, Frictional contact problem for elastic-viscoplastic materials with thermal effect, Applied Mathematics and Mechanics (English Edition), 34 (2013), 761-776.  doi: 10.1007/s10483-013-1705-7.
    [25] M. Sofonea, Convergence results and optimal control for a class of hemivariational inequalities, SIAM Journal on Mathematical Analysis, 50 (2018), 4066-4086.  doi: 10.1137/17M1144404.
    [26] M. Sofonea and A. Matei, History-dependent mixed variational problems in contact mechanics, Journal of Global Optimization, 61 (2015), 591-614.  doi: 10.1007/s10898-014-0193-z.
    [27] M. Sofonea and M. Shillor, A viscoplastic contact problem with a normal compliance with limited penetration condition and history-dependent stiffness coeffcient, Communications on Pure and Applied Analysis, 13 (2014), 371-387.  doi: 10.3934/cpaa.2014.13.371.
    [28] M. Sofonea and Y. B. Xiao, Boundary optimal control of a nonsmooth frictionless contact problem, Computers and Mathematics with Applications, 78 (2019), 152-165.  doi: 10.1016/j.camwa.2019.02.027.
    [29] M. Sofonea and Y. B. Xiao, Tykhonov well-posedness of a viscoplastic contact problem, Evolution Equations and Control Theory, 9 (2019), 1167-1185.  doi: 10.3934/eect.2020048.
    [30] X. Wang and X. Cheng, Numerical analysis of a dynamic viscoplastic contact problem, International Journal of Computer Mathematics. doi: 10.1080/00207160.2021.1955107.
    [31] Y. B. Xiao and M. Sofonea, On the optimal control of variational-hemivariational inequalities, Journal of Mathematical Analysis and Applications, 475 (2019), 364-384.  doi: 10.1016/j.jmaa.2019.02.046.
  • 加载中
SHARE

Article Metrics

HTML views(1232) PDF downloads(387) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return