• Previous Article
    The influence of the physical coefficients of a Bresse system with one singular local viscous damping in the longitudinal displacement on its stabilization
  • EECT Home
  • This Issue
  • Next Article
    Exponential stabilization of a linear Korteweg-de Vries equation with input saturation
doi: 10.3934/eect.2022001
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Exponential stabilization of the problem of transmission of wave equation with linear dynamical feedback control

School of Mathematical Sciences, Shanxi University, Taiyuan, 030006, China

*Corresponding author: Shugen Chai

Received  June 2021 Revised  October 2021 Early access January 2022

Fund Project: The first author is supported by the National Natural Science Foundation of China (No.11671240)

In this paper, we address exponential stabilization of transmission problem of the wave equation with linear dynamical feedback control. Using the classical energy method and multiplier technique, we prove that the energy of system exponentially decays.

Citation: Zhiling Guo, Shugen Chai. Exponential stabilization of the problem of transmission of wave equation with linear dynamical feedback control. Evolution Equations and Control Theory, doi: 10.3934/eect.2022001
References:
[1]

B. A. Akram and F. Mohamed, Stability result for viscoelastic wave equation with dynamic boundary conditions, Z. Angew. Math. Phys., 69 (2018), 95-95. 

[2]

K. T. AndrewsK. L. Kuttler and M. Shillor, Second order evolution equations with dynamic boundary conditions, J. Math. Anal. Appl., 197 (1996), 781-795.  doi: 10.1006/jmaa.1996.0053.

[3]

H. Brezis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, 1$^{st}$ edition, North-Holland Amsterdam, New York, 1973.

[4]

M. M. CavalcantiE. R. S. Coelho and V. N. D. Cavalcanti, Exponential stability for a transmission problem of a viscoelastic wave equation, Appl. Math. Optim., 81 (2020), 621-650.  doi: 10.1007/s00245-018-9514-9.

[5]

B. Chentouf and M. S. Boudellioua, A new approach to stabilization of the wave equation with boundary damping control, SQU Journal For Science, 9 (2004), 33-40. 

[6]

F. Conrad and A. Mifdal, Uniform stabilization of a hybrid system with a class of nonlinear feedback laws, Adv. Math. Sci. Appl., 11 (2001), 549-569. 

[7]

N. Fourrer and I. Lasiecka, Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions, Evol. Equ. Control. The., 2 (2013), 631-667.  doi: 10.3934/eect.2013.2.631.

[8]

A. Haraux, Systèmes Dynamiques Dissipatifs et Applications, 1$^{st}$ edition, Masson, Paris, 1991.

[9]

M. A. Horn, Implications of sharp trace regularity results on boundary stabilization of the system of linear elasticity, J. Math. Anal. Appl., 223 (1998), 126-150.  doi: 10.1006/jmaa.1998.5963.

[10]

T. Kato, Perturbation Theory for Linear Operators, Reprint of the 1980 edition, Springer-Verlag, Berlin, 1995.

[11]

J. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation, J. Differential Equations., 50 (1983), 163-182.  doi: 10.1016/0022-0396(83)90073-6.

[12]

I. Lasiecka and R. Triggiani, Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions, Appl. Math. Optim., 25 (1992), 189-224.  doi: 10.1007/BF01182480.

[13]

J. L. Lions, Contrólabilité Exacte Perturbations et Stabilization de Systèmes Distribués Tome 1 Contrólabilité Exacte, 1$^{st}$ edition, Masson, Paris, 1988.

[14]

W. J. Liu, Stabilization and controllability for the transmission wave equation, IEEE Trans. Automat. Control., 46 (2001), 1900-1907.  doi: 10.1109/9.975473.

[15]

W. J. Liu and G. H. Williams, The exponential stability of the problem of transmission of the wave equation, Bull. Austral. Math. Soc., 57 (1998), 305-327.  doi: 10.1017/S0004972700031683.

[16]

W. J. Liu and G. H. Williams, Exact controllability for problems of transmission of the plate equation with lower-order terms, Quart Appl. Math., 58 (2000), 37-68.  doi: 10.1090/qam/1738557.

[17]

W. J. Liu and G. H. Williams, Exact Neumann boundary controllability for problems of transmission of the wave equation, Glasg. Math. J., 41 (1999), 125-139.  doi: 10.1017/S0017089599970581.

[18]

Z. Q. Liu and Z. B. Fang, The global solvability and asymptotic behavior of a transmission problem for Kirchhoff-type wave equations with memory source on the boundary, Math. Methods Appl. Sci., 42 (2019), 6284-6300.  doi: 10.1002/mma.5722.

[19]

D. MercierS. NicaiseM. A. Sammoury and A. Wehbe, Indirect stability of the wave equation with a dynamic boundary control, Math. Nachr., 291 (2018), 1114-1146.  doi: 10.1002/mana.201700021.

[20]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, 1$^{st}$ edition, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[21]

A. J. A. Ramos and M. W. P. Souza, Equivalence between observability at the boundary and stabilization for transmission problem of the wave equation, Z. Angew. Math. Phys., 68 (2017), Paper No. 48, 11 pp. doi: 10.1007/s00033-017-0791-y.

[22]

T. J. Xiao and J. Liang, Second order parabolic equations in Banach spaces with dynamic boundary conditions, Trans. Amer. Math. Soc., 356 (2004), 4787-4809.  doi: 10.1090/S0002-9947-04-03704-3.

[23]

Z. F. Zhang, Stabilization of the wave equation with variable coefficients and a dynamic boundary control, Electron. J. Differential Equations., 2016 (2016), Paper No. 27, 10 pp.

show all references

References:
[1]

B. A. Akram and F. Mohamed, Stability result for viscoelastic wave equation with dynamic boundary conditions, Z. Angew. Math. Phys., 69 (2018), 95-95. 

[2]

K. T. AndrewsK. L. Kuttler and M. Shillor, Second order evolution equations with dynamic boundary conditions, J. Math. Anal. Appl., 197 (1996), 781-795.  doi: 10.1006/jmaa.1996.0053.

[3]

H. Brezis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, 1$^{st}$ edition, North-Holland Amsterdam, New York, 1973.

[4]

M. M. CavalcantiE. R. S. Coelho and V. N. D. Cavalcanti, Exponential stability for a transmission problem of a viscoelastic wave equation, Appl. Math. Optim., 81 (2020), 621-650.  doi: 10.1007/s00245-018-9514-9.

[5]

B. Chentouf and M. S. Boudellioua, A new approach to stabilization of the wave equation with boundary damping control, SQU Journal For Science, 9 (2004), 33-40. 

[6]

F. Conrad and A. Mifdal, Uniform stabilization of a hybrid system with a class of nonlinear feedback laws, Adv. Math. Sci. Appl., 11 (2001), 549-569. 

[7]

N. Fourrer and I. Lasiecka, Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions, Evol. Equ. Control. The., 2 (2013), 631-667.  doi: 10.3934/eect.2013.2.631.

[8]

A. Haraux, Systèmes Dynamiques Dissipatifs et Applications, 1$^{st}$ edition, Masson, Paris, 1991.

[9]

M. A. Horn, Implications of sharp trace regularity results on boundary stabilization of the system of linear elasticity, J. Math. Anal. Appl., 223 (1998), 126-150.  doi: 10.1006/jmaa.1998.5963.

[10]

T. Kato, Perturbation Theory for Linear Operators, Reprint of the 1980 edition, Springer-Verlag, Berlin, 1995.

[11]

J. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation, J. Differential Equations., 50 (1983), 163-182.  doi: 10.1016/0022-0396(83)90073-6.

[12]

I. Lasiecka and R. Triggiani, Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions, Appl. Math. Optim., 25 (1992), 189-224.  doi: 10.1007/BF01182480.

[13]

J. L. Lions, Contrólabilité Exacte Perturbations et Stabilization de Systèmes Distribués Tome 1 Contrólabilité Exacte, 1$^{st}$ edition, Masson, Paris, 1988.

[14]

W. J. Liu, Stabilization and controllability for the transmission wave equation, IEEE Trans. Automat. Control., 46 (2001), 1900-1907.  doi: 10.1109/9.975473.

[15]

W. J. Liu and G. H. Williams, The exponential stability of the problem of transmission of the wave equation, Bull. Austral. Math. Soc., 57 (1998), 305-327.  doi: 10.1017/S0004972700031683.

[16]

W. J. Liu and G. H. Williams, Exact controllability for problems of transmission of the plate equation with lower-order terms, Quart Appl. Math., 58 (2000), 37-68.  doi: 10.1090/qam/1738557.

[17]

W. J. Liu and G. H. Williams, Exact Neumann boundary controllability for problems of transmission of the wave equation, Glasg. Math. J., 41 (1999), 125-139.  doi: 10.1017/S0017089599970581.

[18]

Z. Q. Liu and Z. B. Fang, The global solvability and asymptotic behavior of a transmission problem for Kirchhoff-type wave equations with memory source on the boundary, Math. Methods Appl. Sci., 42 (2019), 6284-6300.  doi: 10.1002/mma.5722.

[19]

D. MercierS. NicaiseM. A. Sammoury and A. Wehbe, Indirect stability of the wave equation with a dynamic boundary control, Math. Nachr., 291 (2018), 1114-1146.  doi: 10.1002/mana.201700021.

[20]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, 1$^{st}$ edition, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[21]

A. J. A. Ramos and M. W. P. Souza, Equivalence between observability at the boundary and stabilization for transmission problem of the wave equation, Z. Angew. Math. Phys., 68 (2017), Paper No. 48, 11 pp. doi: 10.1007/s00033-017-0791-y.

[22]

T. J. Xiao and J. Liang, Second order parabolic equations in Banach spaces with dynamic boundary conditions, Trans. Amer. Math. Soc., 356 (2004), 4787-4809.  doi: 10.1090/S0002-9947-04-03704-3.

[23]

Z. F. Zhang, Stabilization of the wave equation with variable coefficients and a dynamic boundary control, Electron. J. Differential Equations., 2016 (2016), Paper No. 27, 10 pp.

Figure 1.  transmission domain
[1]

Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control and Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305

[2]

Martin Gugat, Günter Leugering, Ke Wang. Neumann boundary feedback stabilization for a nonlinear wave equation: A strict $H^2$-lyapunov function. Mathematical Control and Related Fields, 2017, 7 (3) : 419-448. doi: 10.3934/mcrf.2017015

[3]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations and Control Theory, 2022, 11 (2) : 373-397. doi: 10.3934/eect.2021004

[4]

Bei Gong, Zhen-Hu Ning, Fengyan Yang. Stabilization of the transmission wave/plate equation with variable coefficients on $ {\mathbb{R}}^n $. Evolution Equations and Control Theory, 2021, 10 (2) : 321-331. doi: 10.3934/eect.2020068

[5]

Behzad Azmi, Karl Kunisch. Receding horizon control for the stabilization of the wave equation. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 449-484. doi: 10.3934/dcds.2018021

[6]

Kim Dang Phung. Boundary stabilization for the wave equation in a bounded cylindrical domain. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1057-1093. doi: 10.3934/dcds.2008.20.1057

[7]

Ionuţ Munteanu. Exponential stabilization of the stochastic Burgers equation by boundary proportional feedback. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2173-2185. doi: 10.3934/dcds.2019091

[8]

Tobias Breiten, Karl Kunisch. Boundary feedback stabilization of the monodomain equations. Mathematical Control and Related Fields, 2017, 7 (3) : 369-391. doi: 10.3934/mcrf.2017013

[9]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure and Applied Analysis, 2021, 20 (5) : 1987-2020. doi: 10.3934/cpaa.2021055

[10]

Xiaorui Wang, Genqi Xu. Uniform stabilization of a wave equation with partial Dirichlet delayed control. Evolution Equations and Control Theory, 2020, 9 (2) : 509-533. doi: 10.3934/eect.2020022

[11]

Marcelo Bongarti, Irena Lasiecka. Boundary feedback stabilization of a critical nonlinear JMGT equation with Neumann-undissipated part of the boundary. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 1957-1985. doi: 10.3934/dcdss.2022107

[12]

A. V. Fursikov. Stabilization for the 3D Navier-Stokes system by feedback boundary control. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 289-314. doi: 10.3934/dcds.2004.10.289

[13]

Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063

[14]

Elena Braverman, Alexandra Rodkina. Stabilization of difference equations with noisy proportional feedback control. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2067-2088. doi: 10.3934/dcdsb.2017085

[15]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems and Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[16]

Martin Gugat, Mario Sigalotti. Stars of vibrating strings: Switching boundary feedback stabilization. Networks and Heterogeneous Media, 2010, 5 (2) : 299-314. doi: 10.3934/nhm.2010.5.299

[17]

Kaïs Ammari, Denis Mercier. Boundary feedback stabilization of a chain of serially connected strings. Evolution Equations and Control Theory, 2015, 4 (1) : 1-19. doi: 10.3934/eect.2015.4.1

[18]

Guanggan Chen, Jian Zhang. Asymptotic behavior for a stochastic wave equation with dynamical boundary conditions. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1441-1453. doi: 10.3934/dcdsb.2012.17.1441

[19]

Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003

[20]

Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control and Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011

2021 Impact Factor: 1.169

Article outline

Figures and Tables

[Back to Top]