[1]
|
B. Alvarez and X. Carvajal, On the local well-posedness for some systems of coupled KdV equations, Nonlinear Anal., 69 (2008), 692-715.
doi: 10.1016/j.na.2007.06.009.
|
[2]
|
J. M. Ash, J. Cohen and G. Wang, On strongly interacting internal solitary waves, J. Fourier Anal. Appl., 2 (1996), 507-517.
doi: 10.1007/s00041-001-4041-4.
|
[3]
|
D. Bekiranov, T. Ogawa and G. Ponce, Weak solvability and well-posedness of a coupled Schrödinger-Korteweg de Vries equation for capillary-gravity wave interactions, Proc. Amer. Math. Soc., 125 (1997), 2907-2919.
doi: 10.1090/S0002-9939-97-03941-5.
|
[4]
|
J. L. Bona, G. Ponce, J.-C. Saut and M. M. Tom, A model system for strong interaction between internal solitary waves, Comm. Math. Phys., 143 (1992), 287-313.
|
[5]
|
J. L. Bona and R. Scott, Solutions of the Korteweg-de Vries equation in fractional order Sobolev spaces, Duke Math. J., 43 (1976), 87-99.
|
[6]
|
J. L. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation, Philos. Trans. Roy. Soc. London Ser. A, 278 (1975), 555-601.
doi: 10.1098/rsta.1975.0035.
|
[7]
|
J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal., 3 (1993), 107-156.
doi: 10.1007/BF01896020.
|
[8]
|
J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation, Geom. Funct. Anal., 3 (1993), 209-262.
doi: 10.1007/BF01895688.
|
[9]
|
E. Cerpa and E. Crépeau, Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 457-475.
doi: 10.1016/j.anihpc.2007.11.003.
|
[10]
|
M. Christ, J. Colliander and T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math., 125 (2003), 1235-1293.
doi: 10.1353/ajm.2003.0040.
|
[11]
|
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on $\Bbb R$ and $\Bbb T$, J. Amer. Math. Soc., 16 (2003), 705-749.
doi: 10.1090/S0894-0347-03-00421-1.
|
[12]
|
P. Constantin and J.-C. Saut, Local smoothing properties of dispersive equations, J. Amer. Math. Soc., 1 (1988), 413-439.
doi: 10.1090/S0894-0347-1988-0928265-0.
|
[13]
|
J.-M. Coron and E. Crépeau, Exact boundary controllability of a nonlinear KdV equation with a critical length, J. Eur. Math. Soc., 6 (2004), 367-398.
|
[14]
|
X. Feng, Global well-posedness of the initial value problem for the Hirota-Satsuma system, Manuscripta Math., 84 (1994), 361-378.
doi: 10.1007/BF02567462.
|
[15]
|
J. A. Gear and R. Grimshaw, Weak and strong interactions between internal solitary waves, Stud. Appl. Math., 70 (1984), 235-258.
doi: 10.1002/sapm1984703235.
|
[16]
|
Z. Guo, Global well-posedness of Korteweg-de Vries equation in $H^{-3/4}(\Bbb R)$, J. Math. Pures Appl., 91 (2009), 583-597.
doi: 10.1016/j.matpur.2009.01.012.
|
[17]
|
R. Hirota and J. Satsuma, Soliton solutions of a coupled Korteweg-de Vries equation, Phys. Lett. A, 85 (1981), 407-408.
doi: 10.1016/0375-9601(81)90423-0.
|
[18]
|
Y. Kametaka, Korteweg -de vries equation, i, ii, iii, iv, Proc. Japan Acad., 45 (1969), 661-665.
|
[19]
|
T. Kappeler and P. Topalov, Global wellposedness of KdV in $H^{-1}(\Bbb T, \Bbb R)$, Duke Math. J., 135 (2006), 327-360.
doi: 10.1215/S0012-7094-06-13524-X.
|
[20]
|
T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, Lecture Notes in Math., 448 (1975), 25-70.
|
[21]
|
T. Kato, On the Korteweg-de\thinspace Vries equation, Manuscripta Math., 28 (1979), 89-99.
doi: 10.1007/BF01647967.
|
[22]
|
T. Kato, The Cauchy problem for the Korteweg-de Vries equation, In Nonlinear Partial Differential Equations and Their Applications, Res. Notes in Math., 53 (1981), 293–307.
|
[23]
|
T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Studies in applied mathematics, 8 (1983), 93-128.
|
[24]
|
C. E. Kenig, G. Ponce and L. Vega, On the (generalized) Korteweg-de Vries equation, Duke Math. J., 59 (1989), 585-610.
doi: 10.1215/S0012-7094-89-05927-9.
|
[25]
|
C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., 40 (1991), 33-69.
doi: 10.1512/iumj.1991.40.40003.
|
[26]
|
C. E. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347.
doi: 10.1090/S0894-0347-1991-1086966-0.
|
[27]
|
C. E. Kenig, G. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71 (1993), 1-21.
doi: 10.1215/S0012-7094-93-07101-3.
|
[28]
|
C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.
doi: 10.1002/cpa.3160460405.
|
[29]
|
C. E. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603.
doi: 10.1090/S0894-0347-96-00200-7.
|
[30]
|
R. Killip and M. Vişan, KdV is well-posed in $H^{-1}$, Ann. of Math., 190 (2019), 249-305.
doi: 10.4007/annals.2019.190.1.4.
|
[31]
|
N. Kishimoto, Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity, Differential Integral Equations, 22 (2009), 447-464.
|
[32]
|
C. Laurent, L. Rosier and B.-Y. Zhang, Control and stabilization of the Korteweg-de Vries equation on a periodic Domain, Comm. Partial Differential Equations, 35 (2010), 707-744.
doi: 10.1080/03605300903585336.
|
[33]
|
F. Linares and M. Panthee, On the Cauchy problem for a coupled system of KdV equations, Commun. Pure Appl. Anal., 3 (2004), 417-431.
doi: 10.3934/cpaa.2004.3.417.
|
[34]
|
A. J. Majda and J. A. Biello, The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves, J. Atmospheric Sci., 60 (2003), 1809-1821.
doi: 10.1175/1520-0469(2003)060<1809:TNIOBA>2.0.CO;2.
|
[35]
|
L. Molinet, A note on ill posedness for the KdV equation, Differential Integral Equations, 24 (2011), 759-765.
|
[36]
|
L. Molinet, Sharp ill-posedness results for the KdV and mKdV equations on the torus, Adv. Math., 230 (2012), 1895-1930.
doi: 10.1016/j.aim.2012.03.026.
|
[37]
|
T. Oh, Diophantine conditions in global well-posedness for coupled KdV-type systems, Electron. J. Differential Equations, (2009), 48 pp.
|
[38]
|
T. Oh, Diophantine conditions in well-posedness theory of coupled KdV-type systems: Local theory, Int. Math. Res. Not. IMRN, 18 (2009), 3516-3556.
doi: 10.1093/imrn/rnp063.
|
[39]
|
L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM Control Optim. Cal. Var., 2 (1997), 33-55.
doi: 10.1051/cocv:1997102.
|
[40]
|
L. Rosier and B.-Y. Zhang, Control and stabilization of the korteweg-de Vries equation: Recent progress, J. Syst. Sci. Complex, 22 (2009), 647-682.
doi: 10.1007/s11424-009-9194-2.
|
[41]
|
D.-L. Russell and B.-Y. Zhang, Exact controllability and stabilizability of the Korteweg-de Vries equation, Trans. Amer. Math. Soc., 348 (1996), 3643-3672.
doi: 10.1090/S0002-9947-96-01672-8.
|
[42]
|
J. C. Saut and R. Temam, Remarks on the Korteweg-de Vries equation, Israel J. Math., 24 (1976), 78-87.
doi: 10.1007/BF02761431.
|
[43]
|
J.-C. Saut and N. Tzvetkov, On a model system for the oblique interaction of internal gravity waves, M2AN Math. Model. Numer. Anal., Special issue for R. Temam's 60th birthday 34 (2000), 501–523.
doi: 10.1051/m2an:2000153.
|
[44]
|
A. Sjöberg, On the Korteweg-de Vries equation: Existence and uniqueness, Department of Computer Sciences, Uppsala University, Uppsala, Sweden, 1967.
|
[45]
|
A. Sjöberg, On the Korteweg-de Vries equation: Existence and uniqueness, J. Math. Anal. Appl., 29 (1970), 569-579.
doi: 10.1016/0022-247X(70)90068-5.
|
[46]
|
P. Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J., 55 (1987), 699-715.
doi: 10.1215/S0012-7094-87-05535-9.
|
[47]
|
T. Tao, Multilinear weighted convolution of $L^2$-functions, and applications to nonlinear dispersive equations, Amer. J. Math., 123 (2001), 839-908.
doi: 10.1353/ajm.2001.0035.
|
[48]
|
L. Tartar, Interpolation non linéaire et régularité, J. Functional Analysis, 9 (1972), 469-489.
doi: 10.1016/0022-1236(72)90022-5.
|
[49]
|
R. Temam, Sur un problème non linéaire, J. Math. Pures Appl., 48 (1969), 159-172.
|
[50]
|
M. Tsutsumi and T. Mukasa, Parabolic regularizations for the generalized Korteweg-de Vries equation, Funkcial. Ekvac., 14 (1971), 89-110.
|
[51]
|
M. Tsutsumi, T. Mukasa and R. Iino, On the generalized Korteweg-de Vries equation, Proc. Japan Acad., 46 (1970), 921-925.
|
[52]
|
B.-Y. Zhang, Analyticity of solutions of the generalized Kortweg-de Vries equation with respect to their initial values, SIAM J. Math. Anal., 26 (1995), 1488-1513.
doi: 10.1137/S0036141093242600.
|
[53]
|
B.-Y. Zhang, A remark on the Cauchy problem for the Korteweg-de Vries equation on a periodic domain, Differential Integral Equations, 8 (1995), 1191-1204.
|
[54]
|
B.-Y. Zhang, Taylor series expansion for solutions of the Korteweg-de Vries equation with respect to their initial values, J. Funct. Anal., 129 (1995), 293-324.
doi: 10.1006/jfan.1995.1052.
|
[55]
|
B.-Y. Zhang, Exact boundary controllability of the Korteweg-de Vries equation, SIAM J. Cont. Optim., 37 (1999), 543-565.
doi: 10.1137/S0363012997327501.
|
[56]
|
B.-Y. Zhang, Well-posedness and control of the Korteweg-de Vries equation on a bounded domain, Fifth International Congress of Chinese Mathematicians, AMS/IP Stud. Adv. Math. AMS, Providence, RI, 51 (2012), 931–956.
|