The viscoelastic wave equation with nonlinear nonlocal weak damping is considered. The local existence of solutions is established. Under arbitrary positive initial energy, a finite-time blow-up result is proved by a new modified concavity method.
Citation: |
[1] |
M. Akil, H. Badawi, S. Nicaise and A. Wehbe, Stability results of coupled wave models with locally memory in a past history framework via nonsmooth coefficients on the interface, Math. Meth. Appl. Sci., 44 (2021), 6950-6981.
doi: 10.1002/mma.7235.![]() ![]() ![]() |
[2] |
A. B. Al'shin, M. O. Korpusov and A. G. Sveshnikov, Blow-Up in Nonlinear Sobolev Type Equations(De Gruyter Ser. Nonlinear Anal. Appl.; V. 15), De Gruyter, Berlin, 2011.
doi: 10.1515/9783110255294.![]() ![]() ![]() |
[3] |
G. Autuori, F. Colasuonno and P. Pucci, Blow up at infinity of solutions of polyharmonic Kirchhoff systems, Complex Var. Elliptic Equ., 57 (2012), 379-395.
doi: 10.1080/17476933.2011.592584.![]() ![]() ![]() |
[4] |
G. Autuori, P. Pucci and M. C. Salvatori, Global nonexistence for nonlinear Kirchhoff systems, Arch. Ration. Mech. Anal., 196 (2010), 489-516.
doi: 10.1007/s00205-009-0241-x.![]() ![]() ![]() |
[5] |
V. Barbu, I. Lasiecka and M. A. Rammaha, On nonlinear wave equations with degenerate damping and source terms, Trans. Amer. Math. Soc., 357 (2005), 2571-2611.
doi: 10.1090/S0002-9947-05-03880-8.![]() ![]() ![]() |
[6] |
V. Barbu, I. Lasiecka and M. A. Rammaha, Blow-up of generalized solutions to wave equations with degenerate damping and source terms, Indiana Univ. Math. J., 56 (2007), 995-1022.
doi: 10.1512/iumj.2007.56.2990.![]() ![]() ![]() |
[7] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti, M. A. Jorge Silva and V. Narciso, Stability for extensible beams with a single degenerate nonlocal damping of Balakrishnan-Taylor type, J. Differential Equations, 290 (2021), 190-222.
doi: 10.1016/j.jde.2021.04.028.![]() ![]() ![]() |
[8] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti and T. F. Ma, Exponential decay of the viscoelastic Euler-Bernoulli equation with a nonlocal dissipation in general domains, Differential Integral Equations, 17 (2004), 495-510.
![]() ![]() |
[9] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti, M. A. J. Silva and A. Y. de Souza Franco, Exponential stability for the wave model with localized memory in a past history framework, J. Differential Equations, 264 (2018), 6535-6584.
doi: 10.1016/j.jde.2018.01.044.![]() ![]() ![]() |
[10] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti, M. A. J. Silva and C. M. Webler, Exponential stability for the wave equation with degenerate nonlocal weak damping, Israel J. Math., 219 (2017), 189-213.
doi: 10.1007/s11856-017-1478-y.![]() ![]() ![]() |
[11] |
I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, Journal of Differential Equations, 252 (2012), 1229-1262.
doi: 10.1016/j.jde.2011.08.022.![]() ![]() ![]() |
[12] |
M. A. J. da Silva and V. Narciso, Long-time dynamics for a class of extensible beams with nonlocal nonlinear damping, Evol. Equ. Control Theory, 6 (2017), 437-470.
doi: 10.3934/eect.2017023.![]() ![]() ![]() |
[13] |
X. Han and M. Wang, Global existence and blow-up of solutions for nonlinear viscoelastic wave equation with degenerate damping and source, Math. Nachr., 284 (2011), 703-716.
doi: 10.1002/mana.200810168.![]() ![]() ![]() |
[14] |
Q. Hu and H. Zhang, Blowup and asymptotic stabiity of weak solutions to wave equations with nonlinear degenerate damping and source terms., Electron. J. Differential Equations, 2007 (2007), No. 76, 10 pp.
![]() ![]() |
[15] |
M. A. Jorge Silva and V. Narciso, Long-time behavior for a plate equation with nonlocal weak damping, Differential and Integral Equations, 27 (2014), 931-948.
![]() ![]() |
[16] |
M. A. Jorge Silva and V. Narciso, Attractors and their properties for a class of nonlocal extensible beams, Discrete and Continuous Dynamical Systems, 35 (2015), 985-1008.
doi: 10.3934/dcds.2015.35.985.![]() ![]() ![]() |
[17] |
M. O. Korpusov, On blowup of solutions to a Kirchhoff type dissipative wave equation with a source and positive energy, Siberian Mathematical Journal, 53 (2012), 702-717.
doi: 10.1134/S003744661204012X.![]() ![]() ![]() |
[18] |
H. Lange and G. Perla Menzala, Rates of decay of a nonlocal beam equation, Differential and Integral Equations, 10 (1997), 1075-1092.
![]() ![]() |
[19] |
Y. Li and Z. Yang, Optimal attractors of the Kirchhoff wave model with structural nonlinear damping, Journal of Differential Equations, 268 (2020), 7741-7773.
doi: 10.1016/j.jde.2019.11.084.![]() ![]() ![]() |
[20] |
Y. Li, Z. Yang and F. Da, Robust attractors for a perturbed non-autonomous extensible beam equation with nonlinear nonlocal damping, Discrete Contin. Dyn. Syst., 39 (2019), 5975-6000.
doi: 10.3934/dcds.2019261.![]() ![]() ![]() |
[21] |
Y. Li, Z. Yang and P. Ding, Regular solutions and strong attractors for the Kirchhoff wave model with structural nonlinear damping, Applied Mathematics Letters, 104 (2020), 106258.
doi: 10.1016/j.aml.2020.106258.![]() ![]() ![]() |
[22] |
G. Liu, Global nonexistence for abstract evolution equations with dissipation, Nonlinear Anal. Real World Appl., 22 (2015), 225-235.
doi: 10.1016/j.nonrwa.2014.09.002.![]() ![]() ![]() |
[23] |
G. Liu and H. Zhang, Blow up at infinity of solutions for integro-differential equation, Appl. Math. Comput., 230 (2014), 303-314.
doi: 10.1016/j.amc.2013.12.105.![]() ![]() ![]() |
[24] |
S. A. Messaoudi, Blow-up of positive-initial energy solutions of a nonlinear hyperbolic equations, J. Math. Anal. Appl., 320 (2006), 902-915.
doi: 10.1016/j.jmaa.2005.07.022.![]() ![]() ![]() |
[25] |
V. Narciso, On a Kirchhoff wave model with nonlocal ninlinear damping, Evol. Equ. Control Theory, 9 (2020), 487-508.
doi: 10.3934/eect.2020021.![]() ![]() ![]() |
[26] |
V. Narciso, Attractors for a plate equation with nonlocal nonlinearities, Math. Meth. Appl. Sci., 40 (2017), 3937-3954.
doi: 10.1002/mma.4275.![]() ![]() ![]() |
[27] |
D. R. Pitts and M. A. Rammaha, Global existence and nonexistence theorems for nonlinear wave equations, Indiana Univ. Math. J., 51 (2002), 1479-1509.
doi: 10.1512/iumj.2002.51.2215.![]() ![]() ![]() |
[28] |
P. Pucci and S. Saldi, Asymptotic stability for nonlinear damped Kirchhoff systems involving the fractionl $p-$Laplacian operator, J. Differential Equations, 263 (2017), 2375-2418.
doi: 10.1016/j.jde.2017.02.039.![]() ![]() ![]() |
[29] |
M. A. Rammaha and S. Sakuntasathien, Critically and degenerately damped systems of nonlinear wave equations with source terms, Appl. Anal., 89 (2010), 1201-1227.
doi: 10.1080/00036811.2010.483423.![]() ![]() ![]() |
[30] |
M. A. Rammaha and S. Sakuntasathien, Global existence and blow up of solutions to systems of nonlinear wave equations with degenerate damping and source terms, Nonlinear Anal., 72 (2010), 2658-2683.
doi: 10.1016/j.na.2009.11.013.![]() ![]() ![]() |
[31] |
M. A. Rammaha and T. A. Strei, Global existence and nonexistence for nonlinear wave equations with damping and source terms, Trans. Amer. Math. Soc., 354 (2002), 3621-3637.
doi: 10.1090/S0002-9947-02-03034-9.![]() ![]() ![]() |
[32] |
N. Takayuki, Attractors and their stability with respect to rotational inertia for nonlocal extensible beam equations, Discrete and Continuous Dynamical Systerms, 40 (2020), 2581-2591.
![]() |
[33] |
E. Vitillaro, Global nonexistence theorems for a class of evolution equations with dissipation, Arch. Ration. Mech. Anal., 149 (1999), 155-182.
doi: 10.1007/s002050050171.![]() ![]() ![]() |
[34] |
S.-T. Wu and C.-Y. Lin, Global nonexistence for an integro-differential equation, Math. Methods Appl. Sci., 35 (2012), 72-83.
doi: 10.1002/mma.1535.![]() ![]() ![]() |
[35] |
Z. J. Yang, P. Ding and Z. M. Liu, Global attractor for the Kirchhoff type equations with strong nonlinear damping and supercritical nonlinearity, Applied Mathematics Letters, 33 (2014), 12-17.
doi: 10.1016/j.aml.2014.02.014.![]() ![]() ![]() |
[36] |
Z. J. Yang and Z. M. Liu, Exponential attractor for the Kirchhoff equations with strong nonlinear damping and supercritical nonlinearity, Applied Mathematics Letters, 46 (2015), 127-132.
doi: 10.1016/j.aml.2015.02.019.![]() ![]() ![]() |
[37] |
H. Zhang, D. Li, W. Zhang and Q. Hu, Asymptotic stability and blow-up for the wave equation with degenerate nonlocal nonlinear damping and source terms, Applicable Analysis, 2020. (to appear).
doi: 10.1080/00036811.2020.1836354.![]() ![]() |