• Previous Article
    Stability estimate for a partial data inverse problem for the convection-diffusion equation
  • EECT Home
  • This Issue
  • Next Article
    Controller and asymptotic autonomy of random attractors for stochastic p-Laplace lattice equations
doi: 10.3934/eect.2022013
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Attractors for a class of extensible beams with strong nonlinear damping

1. 

Department of Mathematics, State University of Londrina, Londrina, 86057-970, Brazil

2. 

Nucleus of Exact and Earth Sciences, State University of Mato Grosso do Sul, Dourados, 79804-970, Brazil

* Corresponding author. Partially supported by FUNDECT Grant 219/2016. Email: vnarciso@uems.br

Received  May 2021 Revised  January 2022 Early access March 2022

We concern to stablish the existence and qualitative properties of the compact global attractor associate to solutions of a class of extensible beam equations with strong nonlinear damping arising from the wave model proposed by Prestel [18].

Citation: Eduardo Henrique Gomes Tavares, Vando Narciso. Attractors for a class of extensible beams with strong nonlinear damping. Evolution Equations and Control Theory, doi: 10.3934/eect.2022013
References:
[1]

F. AlouiI. B. Hassen and A. Haraux, Compactness of trajectories to some nonlinear second order evolution equation and applications, Math. Pures Appl., 100 (2013), 295-326.  doi: 10.1016/j.matpur.2013.01.002.

[2]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei Republicii Socialiste România, Bucharest, Noordhoff International Publishing, Leiden, 1976,352 pp.

[3]

V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer Monographs in Mathematics, Springer, New York, 2010. doi: 10.1007/978-1-4419-5542-5.

[4]

H. Brézis, Équations et inéquations non linéaires dans les spaces vectoriels en dualité, Ann. Ins. Fourier (Grenoble), 18 (1968), 115-175.  doi: 10.5802/aif.280.

[5]

H. Brézis and F. E. Browder, Some properties of higher-order Sobolev spaces, Journal de Mathematiques Pures et Appliquees, 61 (1982), 245-259. 

[6]

M. M. CavalcantiV. N. Domingos CavalcantiM. A. Jorge Silva and V. Narciso, Stability for extensible beams with a single degenerate nonlocal damping of Balakrishnan-Taylor type, Journal of Differential Equations, 290 (2021), 197-222.  doi: 10.1016/j.jde.2021.04.028.

[7]

I. ChueshovM. Eller and I. Lasiecka, On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation, Communication in Partial Differential Equations, 27 (2002), 1901-1951.  doi: 10.1081/PDE-120016132.

[8]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc., 195 (2008), viii+183 pp. doi: 10.1090/memo/0912.

[9]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations: Well-Posedness and Long-Time Dynamics, Springer Monographs in Mathematics, Springer, New York, 2010. doi: 10.1007/978-0-387-87712-9.

[10]

M. A. J. da Silva and V. Narciso, Attractors and their properties for a class of nonlocal extensible beams, Discrete and Continuous Dynamical Systems, 35 (2015), 985-1008.  doi: 10.3934/dcds.2015.35.985.

[11]

M. A. J. da Silva and V. Narciso, Long-time dynamics for a class of extensible beams with nonlocal nonlinear damping, Evolution Equations and Control Theory, 6 (2017), 437-470.  doi: 10.3934/eect.2017023.

[12]

P. Ding and Z. Yang, Longtime behavior for an extensible beam equation with rotational inertia and structural nonlinear damping, Journal of Mathematical Analysis and Applications, 496 (2021), 25 pp. doi: 10.1016/j.jmaa.2020.124785.

[13]

A. Haraux, Damping out of transient states for some semilinear, quasi-autonomous systems of hyperbolic type, Rend. Accad. Naz. Sci. XL Mem. Mat., 7 (1983), 89-136. 

[14]

A. Kh. Khanmamedov, Global attractors for wave equations with nonlinear interior damping and critical exponents, Journal of Differential Equations, 230 (2006), 702-719.  doi: 10.1016/j.jde.2006.06.001.

[15]

I. LasieckaT. F. Ma and R. N. Monteiro, Global smooth attractors for dynamics of thermal shallow shells without vertical dissipation, Trans. Amer. Math. Soc., 371 (2019), 8051-8096.  doi: 10.1090/tran/7756.

[16]

I. LasieckaT. F. Ma and R. N. Monteiro, Long-time dynamics of vectorial von Karman system with nonlinear thermal effects and free boundary conditions, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1037-1072.  doi: 10.3934/dcdsb.2018141.

[17]

T. F. Ma and V. Narciso, Global attractor for a model of extensible beam with nonlinear damping and source terms, Nonlinear Anal., 73 (2010), 3402-3412.  doi: 10.1016/j.na.2010.07.023.

[18]

M.-A. Prestel, Forced oscillations for the solutions of a nonlinear hyperbolic equation, J. Nonlinear Anal., 6 (1982), 209-216.  doi: 10.1016/0362-546X(82)90089-X.

[19]

R. E. Showalter, Monotone Operator in Banach Spaces and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs, 49. American Mathematical Society, Providence, RI, 1997. doi: 10.1090/surv/049.

[20]

Z. Yang, On an extensible beam equation with nonlinear damping and source terms, J. Differential Equations, 254 (2013), 3903-3927.  doi: 10.1016/j.jde.2013.02.008.

show all references

References:
[1]

F. AlouiI. B. Hassen and A. Haraux, Compactness of trajectories to some nonlinear second order evolution equation and applications, Math. Pures Appl., 100 (2013), 295-326.  doi: 10.1016/j.matpur.2013.01.002.

[2]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei Republicii Socialiste România, Bucharest, Noordhoff International Publishing, Leiden, 1976,352 pp.

[3]

V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer Monographs in Mathematics, Springer, New York, 2010. doi: 10.1007/978-1-4419-5542-5.

[4]

H. Brézis, Équations et inéquations non linéaires dans les spaces vectoriels en dualité, Ann. Ins. Fourier (Grenoble), 18 (1968), 115-175.  doi: 10.5802/aif.280.

[5]

H. Brézis and F. E. Browder, Some properties of higher-order Sobolev spaces, Journal de Mathematiques Pures et Appliquees, 61 (1982), 245-259. 

[6]

M. M. CavalcantiV. N. Domingos CavalcantiM. A. Jorge Silva and V. Narciso, Stability for extensible beams with a single degenerate nonlocal damping of Balakrishnan-Taylor type, Journal of Differential Equations, 290 (2021), 197-222.  doi: 10.1016/j.jde.2021.04.028.

[7]

I. ChueshovM. Eller and I. Lasiecka, On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation, Communication in Partial Differential Equations, 27 (2002), 1901-1951.  doi: 10.1081/PDE-120016132.

[8]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc., 195 (2008), viii+183 pp. doi: 10.1090/memo/0912.

[9]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations: Well-Posedness and Long-Time Dynamics, Springer Monographs in Mathematics, Springer, New York, 2010. doi: 10.1007/978-0-387-87712-9.

[10]

M. A. J. da Silva and V. Narciso, Attractors and their properties for a class of nonlocal extensible beams, Discrete and Continuous Dynamical Systems, 35 (2015), 985-1008.  doi: 10.3934/dcds.2015.35.985.

[11]

M. A. J. da Silva and V. Narciso, Long-time dynamics for a class of extensible beams with nonlocal nonlinear damping, Evolution Equations and Control Theory, 6 (2017), 437-470.  doi: 10.3934/eect.2017023.

[12]

P. Ding and Z. Yang, Longtime behavior for an extensible beam equation with rotational inertia and structural nonlinear damping, Journal of Mathematical Analysis and Applications, 496 (2021), 25 pp. doi: 10.1016/j.jmaa.2020.124785.

[13]

A. Haraux, Damping out of transient states for some semilinear, quasi-autonomous systems of hyperbolic type, Rend. Accad. Naz. Sci. XL Mem. Mat., 7 (1983), 89-136. 

[14]

A. Kh. Khanmamedov, Global attractors for wave equations with nonlinear interior damping and critical exponents, Journal of Differential Equations, 230 (2006), 702-719.  doi: 10.1016/j.jde.2006.06.001.

[15]

I. LasieckaT. F. Ma and R. N. Monteiro, Global smooth attractors for dynamics of thermal shallow shells without vertical dissipation, Trans. Amer. Math. Soc., 371 (2019), 8051-8096.  doi: 10.1090/tran/7756.

[16]

I. LasieckaT. F. Ma and R. N. Monteiro, Long-time dynamics of vectorial von Karman system with nonlinear thermal effects and free boundary conditions, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1037-1072.  doi: 10.3934/dcdsb.2018141.

[17]

T. F. Ma and V. Narciso, Global attractor for a model of extensible beam with nonlinear damping and source terms, Nonlinear Anal., 73 (2010), 3402-3412.  doi: 10.1016/j.na.2010.07.023.

[18]

M.-A. Prestel, Forced oscillations for the solutions of a nonlinear hyperbolic equation, J. Nonlinear Anal., 6 (1982), 209-216.  doi: 10.1016/0362-546X(82)90089-X.

[19]

R. E. Showalter, Monotone Operator in Banach Spaces and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs, 49. American Mathematical Society, Providence, RI, 1997. doi: 10.1090/surv/049.

[20]

Z. Yang, On an extensible beam equation with nonlinear damping and source terms, J. Differential Equations, 254 (2013), 3903-3927.  doi: 10.1016/j.jde.2013.02.008.

[1]

Marcio Antonio Jorge da Silva, Vando Narciso. Long-time dynamics for a class of extensible beams with nonlocal nonlinear damping*. Evolution Equations and Control Theory, 2017, 6 (3) : 437-470. doi: 10.3934/eect.2017023

[2]

Igor Chueshov, Stanislav Kolbasin. Long-time dynamics in plate models with strong nonlinear damping. Communications on Pure and Applied Analysis, 2012, 11 (2) : 659-674. doi: 10.3934/cpaa.2012.11.659

[3]

Andrea Giorgini. On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior. Communications on Pure and Applied Analysis, 2016, 15 (1) : 219-241. doi: 10.3934/cpaa.2016.15.219

[4]

Giulio Schimperna, Antonio Segatti, Ulisse Stefanelli. Well-posedness and long-time behavior for a class of doubly nonlinear equations. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 15-38. doi: 10.3934/dcds.2007.18.15

[5]

Jan Prüss, Vicente Vergara, Rico Zacher. Well-posedness and long-time behaviour for the non-isothermal Cahn-Hilliard equation with memory. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 625-647. doi: 10.3934/dcds.2010.26.625

[6]

Igor Chueshov, Irena Lasiecka, Justin Webster. Flow-plate interactions: Well-posedness and long-time behavior. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 925-965. doi: 10.3934/dcdss.2014.7.925

[7]

Yue Sun, Zhijian Yang. Strong attractors and their robustness for an extensible beam model with energy damping. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3101-3129. doi: 10.3934/dcdsb.2021175

[8]

A. Kh. Khanmamedov. Long-time behaviour of wave equations with nonlinear interior damping. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1185-1198. doi: 10.3934/dcds.2008.21.1185

[9]

Chao Yang, Yanbing Yang. Long-time behavior for fourth-order wave equations with strain term and nonlinear weak damping term. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4643-4658. doi: 10.3934/dcdss.2021110

[10]

Yanan Li, Zhijian Yang, Fang Da. Robust attractors for a perturbed non-autonomous extensible beam equation with nonlinear nonlocal damping. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5975-6000. doi: 10.3934/dcds.2019261

[11]

Haydi Israel. Well-posedness and long time behavior of an Allen-Cahn type equation. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2811-2827. doi: 10.3934/cpaa.2013.12.2811

[12]

Myeongju Chae, Kyungkeun Kang, Jihoon Lee. Global well-posedness and long time behaviors of chemotaxis-fluid system modeling coral fertilization. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2135-2163. doi: 10.3934/dcds.2020109

[13]

Jean-Paul Chehab, Pierre Garnier, Youcef Mammeri. Long-time behavior of solutions of a BBM equation with generalized damping. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1897-1915. doi: 10.3934/dcdsb.2015.20.1897

[14]

Francesca Bucci, Igor Chueshov. Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 557-586. doi: 10.3934/dcds.2008.22.557

[15]

Irena Lasiecka, To Fu Ma, Rodrigo Nunes Monteiro. Long-time dynamics of vectorial von Karman system with nonlinear thermal effects and free boundary conditions. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1037-1072. doi: 10.3934/dcdsb.2018141

[16]

Jinkai Li, Edriss Titi. Global well-posedness of strong solutions to a tropical climate model. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4495-4516. doi: 10.3934/dcds.2016.36.4495

[17]

Pelin G. Geredeli, Azer Khanmamedov. Long-time dynamics of the parabolic $p$-Laplacian equation. Communications on Pure and Applied Analysis, 2013, 12 (2) : 735-754. doi: 10.3934/cpaa.2013.12.735

[18]

Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2201-2238. doi: 10.3934/dcdsb.2020360

[19]

Tristan Roget. On the long-time behaviour of age and trait structured population dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2551-2576. doi: 10.3934/dcdsb.2018265

[20]

A. Kh. Khanmamedov. Long-time behaviour of doubly nonlinear parabolic equations. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1373-1400. doi: 10.3934/cpaa.2009.8.1373

2021 Impact Factor: 1.169

Article outline

[Back to Top]