• Previous Article
    Convergence of random attractors towards deterministic singleton attractor for 2D and 3D convective Brinkman-Forchheimer equations
  • EECT Home
  • This Issue
  • Next Article
    Controllability results for Sobolev type $ \psi - $Hilfer fractional backward perturbed integro-differential equations in Hilbert space
doi: 10.3934/eect.2022018
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Boundedness of solutions in a quasilinear chemo-repulsion system with nonlinear signal production

1. 

College of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

2. 

School of Mathematics and Statistics, Yunnan University, Kunming 650091, China

* Corresponding author: Pan Zheng

Received  November 2021 Revised  February 2022 Early access April 2022

This paper deals with a quasilinear parabolic-elliptic chemo-repulsion system with nonlinear signal production
$ \begin{eqnarray*} \label{1a} \left\{ \begin{split}{} & u_t = \nabla\cdot(\phi(u)\nabla u)+\chi\nabla\cdot(u(u+1)^{\alpha-1}\nabla v)+f(u), & (x,t)\in \Omega\times (0,\infty), \\ & 0 = \Delta v-v+u^{\beta}, & (x,t)\in \Omega\times (0,\infty), \end{split} \right. \end{eqnarray*} $
under homogeneous Neumann boundary conditions in a smoothly bounded domain
$ \Omega \subset \mathbb{R}^{n}(n\geq1), $
where
$ \chi,\beta>0,\alpha\in\mathbb{R}, $
the nonlinear diffusion
$ \phi\in C^{2}([0,\infty)) $
satisfies
$ \phi(u)\geq(u+1)^{m} $
with
$ m\in\mathbb{R}, $
and the function
$ f\in C^{1}([0,\infty)) $
is a generalized growth term.
$ \bullet $
When
$ f\equiv0, $
it is shown that the solution of the above system is global and uniformly bounded for all
$ \chi,\beta>0 $
and
$ m,\alpha\in\mathbb{R} $
.
$ \bullet $
When
$ f\not\equiv0 $
and assume that
$ f(u)\leq ku-bu^{\gamma+1} $
with
$ k,b,\gamma>0, $
it is proved that the solution of the above system is also global and uniformly bounded for all
$ \chi,\beta>0 $
and
$ m,\alpha\in\mathbb{R}. $
Citation: Runlin Hu, Pan Zheng, Zhangqin Gao. Boundedness of solutions in a quasilinear chemo-repulsion system with nonlinear signal production. Evolution Equations and Control Theory, doi: 10.3934/eect.2022018
References:
[1]

N. D. Alikakos, $L^{p}$-bounds of solutions of reaction-diffusion equations, Commun. Partial. Differ. Equ., 4 (1979), 827-868.  doi: 10.1080/03605307908820113.

[2]

T. Black, M. Fuest and J. Lankeit, Relaxed parameter conditions for chemotactic collapse in logistic-type parabolic-elliptic Keller-Segel systems, Z. Angew. Math. Phys., 72 (2021), Paper No. 96, 23 pp. doi: 10.1007/s00033-021-01524-8.

[3]

Y. Chiyo and T. Yokota, Boundedness and finite-time blow-up in a quasilinear parabolic-elliptic-elliptic attraction-repulsion chemotaxis system, Z. Angew. Math. Phys., 73 (2022), Paper No. 61. doi: 10.1007/s00033-022-01695-y.

[4]

M. Fuest, Approaching optimality in blow-up results for Keller-Segel systems with logistic-type dampening, NoDEA Nonlinear Differential Equations Appl., 28 (2021), Paper No. 16, 17 pp. doi: 10.1007/s00030-021-00677-9.

[5]

G. L. Hazelbauer, Taxis and behavior: Elementary sensory systems in biology, Chapman and Hall, London, 3 (1979), 185-186. 

[6]

F. Heihoff, On the existence of global smooth solutions to the parabolic-elliptic Keller-Segel system with irregular initial data, J. Dyn. Differ. Equ., 9 (2021), 1-25. 

[7]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.

[8]

L. Hong, M. Tian and S. Zheng, An attraction-repulsion chemotaxis system with nonlinear productions, J. Math. Anal. Appl., 484 (2020), Paper No. 123703, 8 pp. doi: 10.1016/j.jmaa.2019.123703.

[9]

B. Hu and Y. Tao, Boundedness in a parabolic-elliptic chemotaxis-growth system under a critical parameter condition, Appl. Math. Lett., 64 (2017), 1-7.  doi: 10.1016/j.aml.2016.08.003.

[10]

R. Hu and P. Zheng, On a quasilinear fully parabolic attraction or repulsion chemotaxis system with nonlinear signal production, Discrete Contin. Dyn. Syst. Ser. B., 2022. doi: 10.3934/dcdsb.2022041.

[11]

K. Kang and A. Stevens, Blowup and global solutions in a chemotaxis growth system, Nonlinear Anal. Theory Methods Appl., 135 (2016), 57-72.  doi: 10.1016/j.na.2016.01.017.

[12]

Y. Lai and Y. Xiao, Existence and asymptotic behavior of global solutions to chemorepulsion systems with nonlinear sensitivity, Electron. J. Differ. Equ., (2017), Paper No. 254, 9 pp.

[13]

J. Lankeit, Chemotaxis can prevent thresholds on population density, Discrete Contin. Dyn. Syst. B., 20 (2015), 1499-1527.  doi: 10.3934/dcdsb.2015.20.1499.

[14]

H. LefraichL. TaourirteH. Khalfi and N. E. Alaa, On the existence of global weak solutions to a generalized Keller-Segel model with arbitrary growth and nonlinear signal production, An. Univ. Craiova Ser. Mat. Inform., 46 (2019), 99-108. 

[15]

J. Li and Y. Wang, Repulsion effects on boundedness in the higher dimensional fully parabolic attraction-repulsion chemotaxis system, J. Math. Anal. Appl., 467 (2018), 1066-1079.  doi: 10.1016/j.jmaa.2018.07.051.

[16]

Y. Li and W. Wang, Boundedness in a four-dimensional attraction-repulsion chemotaxis system with logistic source, Math. Methods Appl. Sci., 41 (2018), 4936-4942.  doi: 10.1002/mma.4942.

[17]

K. Lin and T. Xiang, Strong damping effect of chemo-repulsion prevents blow-up, J. Math. Phys., 62 (2021), Paper No. 041508, 29 pp. doi: 10.1063/5.0032829.

[18]

M. S. Mock, An intial value problem from semiconductor device theory, SIAM J. Math. Anal., 5 (1974), 597-612.  doi: 10.1137/0505061.

[19]

M. S. Mock, Asymtotic behaviour of solutions of transport equations for semiconductor devices, J. Math. Anal. Appl., 49 (1975), 215-225.  doi: 10.1016/0022-247X(75)90172-9.

[20]

T. Nagai and T. Yamada, Global existence of solutions to the Cauchy problem for an attraction-repulsion chemotaxis system in $\mathbb{R}^{2}$ in the attractive dominant case, J. Math. Anal. Appl., 462 (2018), 1519-1535.  doi: 10.1016/j.jmaa.2018.02.057.

[21]

Y. Tanaka, Boundedness and finite-time blow-up in a quasilinear parabolic-elliptic chemotaxis system with logistic source and nonlinear production, J. Math. Anal. Appl., 506 (2022), Paper No. 125654, 29 pp. doi: 10.1016/j.jmaa.2021.125654.

[22]

Y. Tao, Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity, Discrete Contin. Dyn. Syst. Ser. B., 18 (2013), 2705-2722.  doi: 10.3934/dcdsb.2013.18.2705.

[23]

Y. Tao and Z.-A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36.  doi: 10.1142/S0218202512500443.

[24]

Y. Tao and M. Winkler, A chmotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source, SIAM J. Math. Anal., 43 (2011), 685-704.  doi: 10.1137/100802943.

[25]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equ., 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.

[26]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Commun. Partial. Differ. Equ., 32 (2007), 849-877.  doi: 10.1080/03605300701319003.

[27]

R. Temam, Infinite-Dimensional Dynamical Systemsin Mechanics and Physics, 2$^nd$ edition, Appl. Math. Sci. vol.68, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.

[28]

L. WangC. Mu and P. Zheng, On a quasilinear parabolic-elliptic chemotaxis system with logistic source, J. Differ. Equ., 256 (2014), 1847-1872.  doi: 10.1016/j.jde.2013.12.007.

[29]

W. Wang and Y. Li, Boundedness and finite-time blow-up in a chemotaxis system with nonlinear signal production, Nonlinear Anal. Real World Appl., 59 (2021), Paper No. 103237, 21 pp. doi: 10.1016/j.nonrwa.2020.103237.

[30]

W. WangM. Zhuang and S. Zheng, Positive effects of repulsion on boundedness in a fully parabolic attraction-repulsion chemotaxis system with logistic source, J. Differ. Equ., 264 (2018), 2011-2027.  doi: 10.1016/j.jde.2017.10.011.

[31]

Y. Wang, Boundedness in a quasilinear parabolic-elliptic repulsion chemotaxis system with logistic source, 2014 11th ICCWAMTIP. IEEE., (2014), 373–376.

[32]

Y. Wang, Global existence and boundedness in a quasilinear attraction-repulsion chemotaxis system of parabolic-elliptic type, Bound. Value Prob., (2016), Paper No. 9, 22 pp. doi: 10.1186/s13661-016-0518-6.

[33]

M. Winkler, Chemotaxis with logistic source: Very weak global solutions and their boundedness properties, J. Math. Anal. Appl., 348 (2008), 708-729.  doi: 10.1016/j.jmaa.2008.07.071.

[34]

M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384 (2011), 261-272.  doi: 10.1016/j.jmaa.2011.05.057.

[35]

M. Winkler, How far can chemotactic cross-diffusion enforce exceeding carrying capacities?, J. Nonlinear Sci., 24 (2014), 809-855.  doi: 10.1007/s00332-014-9205-x.

[36]

M. Winkler, Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems, Discrete Contin. Dyn. Syst. Ser. B., 22 (2017), 2777-2793.  doi: 10.3934/dcdsb.2017135.

[37]

M. Winkler, A critical blow-up exponent in a chemotaxis system with nonlinear signal production, Nonlinearity, 31 (2018), 2031-2056.  doi: 10.1088/1361-6544/aaaa0e.

[38]

M. Winkler, Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation, Z. Angew. Math. Phys., 69 (2018), Paper No. 69, 40 pp. doi: 10.1007/s00033-018-0935-8.

[39]

M. Winkler and K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal. Theory Methods Appl., 72 (2010), 1044-1064.  doi: 10.1016/j.na.2009.07.045.

[40]

T. Xiang, Dynamics in a parabolic-elliptic chemotaxis system with growth source and nonlinear secretion, Commun. Pure Appl. Anal., 18 (2019), 255-284.  doi: 10.3934/cpaa.2019014.

[41]

Q. Zhang and Y. Li, An attraction-repulsion chemotaxis system with logistic source, ZAMM Z. Angew. Math. Mech., 96 (2016), 570-584.  doi: 10.1002/zamm.201400311.

[42]

P. Zheng, On a generalized volume-filling chemotaxis system with nonlinear signal production, Monatsh. Math., 2022. doi: 10.1007/s00605-022-01669-2.

[43]

P. ZhengC. MuX. Hu and Y. Tian, Boundedness of solutions in a chemotaxis system with nonlinear sensitivity and logistic source, J. Math. Anal. Appl., 424 (2015), 509-522.  doi: 10.1016/j.jmaa.2014.11.031.

[44]

S. ZhouT. Gong and J. Yang, Boundedness in a fully parabolic quasilinear repulsion chemotaxis model of higher dimension, Appl. Math. J. Chinese Univ. Ser. B., 35 (2020), 244-252.  doi: 10.1007/s11766-020-3994-5.

show all references

References:
[1]

N. D. Alikakos, $L^{p}$-bounds of solutions of reaction-diffusion equations, Commun. Partial. Differ. Equ., 4 (1979), 827-868.  doi: 10.1080/03605307908820113.

[2]

T. Black, M. Fuest and J. Lankeit, Relaxed parameter conditions for chemotactic collapse in logistic-type parabolic-elliptic Keller-Segel systems, Z. Angew. Math. Phys., 72 (2021), Paper No. 96, 23 pp. doi: 10.1007/s00033-021-01524-8.

[3]

Y. Chiyo and T. Yokota, Boundedness and finite-time blow-up in a quasilinear parabolic-elliptic-elliptic attraction-repulsion chemotaxis system, Z. Angew. Math. Phys., 73 (2022), Paper No. 61. doi: 10.1007/s00033-022-01695-y.

[4]

M. Fuest, Approaching optimality in blow-up results for Keller-Segel systems with logistic-type dampening, NoDEA Nonlinear Differential Equations Appl., 28 (2021), Paper No. 16, 17 pp. doi: 10.1007/s00030-021-00677-9.

[5]

G. L. Hazelbauer, Taxis and behavior: Elementary sensory systems in biology, Chapman and Hall, London, 3 (1979), 185-186. 

[6]

F. Heihoff, On the existence of global smooth solutions to the parabolic-elliptic Keller-Segel system with irregular initial data, J. Dyn. Differ. Equ., 9 (2021), 1-25. 

[7]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.

[8]

L. Hong, M. Tian and S. Zheng, An attraction-repulsion chemotaxis system with nonlinear productions, J. Math. Anal. Appl., 484 (2020), Paper No. 123703, 8 pp. doi: 10.1016/j.jmaa.2019.123703.

[9]

B. Hu and Y. Tao, Boundedness in a parabolic-elliptic chemotaxis-growth system under a critical parameter condition, Appl. Math. Lett., 64 (2017), 1-7.  doi: 10.1016/j.aml.2016.08.003.

[10]

R. Hu and P. Zheng, On a quasilinear fully parabolic attraction or repulsion chemotaxis system with nonlinear signal production, Discrete Contin. Dyn. Syst. Ser. B., 2022. doi: 10.3934/dcdsb.2022041.

[11]

K. Kang and A. Stevens, Blowup and global solutions in a chemotaxis growth system, Nonlinear Anal. Theory Methods Appl., 135 (2016), 57-72.  doi: 10.1016/j.na.2016.01.017.

[12]

Y. Lai and Y. Xiao, Existence and asymptotic behavior of global solutions to chemorepulsion systems with nonlinear sensitivity, Electron. J. Differ. Equ., (2017), Paper No. 254, 9 pp.

[13]

J. Lankeit, Chemotaxis can prevent thresholds on population density, Discrete Contin. Dyn. Syst. B., 20 (2015), 1499-1527.  doi: 10.3934/dcdsb.2015.20.1499.

[14]

H. LefraichL. TaourirteH. Khalfi and N. E. Alaa, On the existence of global weak solutions to a generalized Keller-Segel model with arbitrary growth and nonlinear signal production, An. Univ. Craiova Ser. Mat. Inform., 46 (2019), 99-108. 

[15]

J. Li and Y. Wang, Repulsion effects on boundedness in the higher dimensional fully parabolic attraction-repulsion chemotaxis system, J. Math. Anal. Appl., 467 (2018), 1066-1079.  doi: 10.1016/j.jmaa.2018.07.051.

[16]

Y. Li and W. Wang, Boundedness in a four-dimensional attraction-repulsion chemotaxis system with logistic source, Math. Methods Appl. Sci., 41 (2018), 4936-4942.  doi: 10.1002/mma.4942.

[17]

K. Lin and T. Xiang, Strong damping effect of chemo-repulsion prevents blow-up, J. Math. Phys., 62 (2021), Paper No. 041508, 29 pp. doi: 10.1063/5.0032829.

[18]

M. S. Mock, An intial value problem from semiconductor device theory, SIAM J. Math. Anal., 5 (1974), 597-612.  doi: 10.1137/0505061.

[19]

M. S. Mock, Asymtotic behaviour of solutions of transport equations for semiconductor devices, J. Math. Anal. Appl., 49 (1975), 215-225.  doi: 10.1016/0022-247X(75)90172-9.

[20]

T. Nagai and T. Yamada, Global existence of solutions to the Cauchy problem for an attraction-repulsion chemotaxis system in $\mathbb{R}^{2}$ in the attractive dominant case, J. Math. Anal. Appl., 462 (2018), 1519-1535.  doi: 10.1016/j.jmaa.2018.02.057.

[21]

Y. Tanaka, Boundedness and finite-time blow-up in a quasilinear parabolic-elliptic chemotaxis system with logistic source and nonlinear production, J. Math. Anal. Appl., 506 (2022), Paper No. 125654, 29 pp. doi: 10.1016/j.jmaa.2021.125654.

[22]

Y. Tao, Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity, Discrete Contin. Dyn. Syst. Ser. B., 18 (2013), 2705-2722.  doi: 10.3934/dcdsb.2013.18.2705.

[23]

Y. Tao and Z.-A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36.  doi: 10.1142/S0218202512500443.

[24]

Y. Tao and M. Winkler, A chmotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source, SIAM J. Math. Anal., 43 (2011), 685-704.  doi: 10.1137/100802943.

[25]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equ., 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.

[26]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Commun. Partial. Differ. Equ., 32 (2007), 849-877.  doi: 10.1080/03605300701319003.

[27]

R. Temam, Infinite-Dimensional Dynamical Systemsin Mechanics and Physics, 2$^nd$ edition, Appl. Math. Sci. vol.68, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.

[28]

L. WangC. Mu and P. Zheng, On a quasilinear parabolic-elliptic chemotaxis system with logistic source, J. Differ. Equ., 256 (2014), 1847-1872.  doi: 10.1016/j.jde.2013.12.007.

[29]

W. Wang and Y. Li, Boundedness and finite-time blow-up in a chemotaxis system with nonlinear signal production, Nonlinear Anal. Real World Appl., 59 (2021), Paper No. 103237, 21 pp. doi: 10.1016/j.nonrwa.2020.103237.

[30]

W. WangM. Zhuang and S. Zheng, Positive effects of repulsion on boundedness in a fully parabolic attraction-repulsion chemotaxis system with logistic source, J. Differ. Equ., 264 (2018), 2011-2027.  doi: 10.1016/j.jde.2017.10.011.

[31]

Y. Wang, Boundedness in a quasilinear parabolic-elliptic repulsion chemotaxis system with logistic source, 2014 11th ICCWAMTIP. IEEE., (2014), 373–376.

[32]

Y. Wang, Global existence and boundedness in a quasilinear attraction-repulsion chemotaxis system of parabolic-elliptic type, Bound. Value Prob., (2016), Paper No. 9, 22 pp. doi: 10.1186/s13661-016-0518-6.

[33]

M. Winkler, Chemotaxis with logistic source: Very weak global solutions and their boundedness properties, J. Math. Anal. Appl., 348 (2008), 708-729.  doi: 10.1016/j.jmaa.2008.07.071.

[34]

M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384 (2011), 261-272.  doi: 10.1016/j.jmaa.2011.05.057.

[35]

M. Winkler, How far can chemotactic cross-diffusion enforce exceeding carrying capacities?, J. Nonlinear Sci., 24 (2014), 809-855.  doi: 10.1007/s00332-014-9205-x.

[36]

M. Winkler, Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems, Discrete Contin. Dyn. Syst. Ser. B., 22 (2017), 2777-2793.  doi: 10.3934/dcdsb.2017135.

[37]

M. Winkler, A critical blow-up exponent in a chemotaxis system with nonlinear signal production, Nonlinearity, 31 (2018), 2031-2056.  doi: 10.1088/1361-6544/aaaa0e.

[38]

M. Winkler, Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation, Z. Angew. Math. Phys., 69 (2018), Paper No. 69, 40 pp. doi: 10.1007/s00033-018-0935-8.

[39]

M. Winkler and K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal. Theory Methods Appl., 72 (2010), 1044-1064.  doi: 10.1016/j.na.2009.07.045.

[40]

T. Xiang, Dynamics in a parabolic-elliptic chemotaxis system with growth source and nonlinear secretion, Commun. Pure Appl. Anal., 18 (2019), 255-284.  doi: 10.3934/cpaa.2019014.

[41]

Q. Zhang and Y. Li, An attraction-repulsion chemotaxis system with logistic source, ZAMM Z. Angew. Math. Mech., 96 (2016), 570-584.  doi: 10.1002/zamm.201400311.

[42]

P. Zheng, On a generalized volume-filling chemotaxis system with nonlinear signal production, Monatsh. Math., 2022. doi: 10.1007/s00605-022-01669-2.

[43]

P. ZhengC. MuX. Hu and Y. Tian, Boundedness of solutions in a chemotaxis system with nonlinear sensitivity and logistic source, J. Math. Anal. Appl., 424 (2015), 509-522.  doi: 10.1016/j.jmaa.2014.11.031.

[44]

S. ZhouT. Gong and J. Yang, Boundedness in a fully parabolic quasilinear repulsion chemotaxis model of higher dimension, Appl. Math. J. Chinese Univ. Ser. B., 35 (2020), 244-252.  doi: 10.1007/s11766-020-3994-5.

[1]

Runlin Hu, Pan Zheng. On a quasilinear fully parabolic attraction or repulsion chemotaxis system with nonlinear signal production. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022041

[2]

Xu Pan, Liangchen Wang. Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2211-2236. doi: 10.3934/cpaa.2021064

[3]

Mengyao Ding, Wei Wang. Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4665-4684. doi: 10.3934/dcdsb.2018328

[4]

Hong Yi, Chunlai Mu, Shuyan Qiu, Lu Xu. Global boundedness of radial solutions to a parabolic-elliptic chemotaxis system with flux limitation and nonlinear signal production. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3825-3849. doi: 10.3934/cpaa.2021133

[5]

Lu Xu, Chunlai Mu, Qiao Xin. Global boundedness and asymptotic behavior of solutions for a quasilinear chemotaxis model of multiple sclerosis with nonlinear signal secretion. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022118

[6]

Hai-Yang Jin, Tian Xiang. Repulsion effects on boundedness in a quasilinear attraction-repulsion chemotaxis model in higher dimensions. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3071-3085. doi: 10.3934/dcdsb.2017197

[7]

Yilong Wang, Zhaoyin Xiang. Boundedness in a quasilinear 2D parabolic-parabolic attraction-repulsion chemotaxis system. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1953-1973. doi: 10.3934/dcdsb.2016031

[8]

Miaoqing Tian, Shujuan Wang, Xia Xiao. Global boundedness in a quasilinear two-species attraction-repulsion chemotaxis system with two chemicals. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022071

[9]

Youshan Tao, Michael Winkler. A chemotaxis-haptotaxis system with haptoattractant remodeling: Boundedness enforced by mild saturation of signal production. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2047-2067. doi: 10.3934/cpaa.2019092

[10]

Xie Li, Zhaoyin Xiang. Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3503-3531. doi: 10.3934/dcds.2015.35.3503

[11]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[12]

Jiashan Zheng. Boundedness of solutions to a quasilinear higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 627-643. doi: 10.3934/dcds.2017026

[13]

Aichao Liu, Binxiang Dai, Yuming Chen. Boundedness in a two species attraction-repulsion chemotaxis system with two chemicals. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021306

[14]

Yuya Tanaka, Tomomi Yokota. Finite-time blow-up in a quasilinear degenerate parabolic–elliptic chemotaxis system with logistic source and nonlinear production. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022075

[15]

Chun Huang. Global boundedness for a chemotaxis-competition system with signal dependent sensitivity and loop. Electronic Research Archive, 2021, 29 (5) : 3261-3279. doi: 10.3934/era.2021037

[16]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[17]

Philippe Laurençot. Global bounded and unbounded solutions to a chemotaxis system with indirect signal production. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6419-6444. doi: 10.3934/dcdsb.2019145

[18]

Guoqiang Ren, Heping Ma. Global existence in a chemotaxis system with singular sensitivity and signal production. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 343-360. doi: 10.3934/dcdsb.2021045

[19]

Shijie Shi, Zhengrong Liu, Hai-Yang Jin. Boundedness and large time behavior of an attraction-repulsion chemotaxis model with logistic source. Kinetic and Related Models, 2017, 10 (3) : 855-878. doi: 10.3934/krm.2017034

[20]

Marcel Freitag. The fast signal diffusion limit in nonlinear chemotaxis systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1109-1128. doi: 10.3934/dcdsb.2019211

2021 Impact Factor: 1.169

Article outline

[Back to Top]