doi: 10.3934/eect.2022026
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

A general decay result for the Cauchy problem of plate equations with memory

1. 

Department of Mathematics, University of Sharjah, Sharjah, United Arab Emirates, UAE

2. 

Laboratoire de Mathématiques Appliquées, Université Kasdi Merbah, BP 511, Ouargla, Algeria

* Corresponding author: Salim A. Messaoudi

Received  October 2021 Revised  April 2022 Early access May 2022

In this paper, we investigate the general decay rate of the solutions for a class of plate equations with memory term in the whole space
$ \mathbb{R}^n $
,
$ n\geq 1 $
, given by
$ \begin{equation*} u_{tt}+\Delta^2 u+ u+ \int_0^t g(t-s)A u(s)ds = 0, \end{equation*} $
with
$ A = \Delta $
or
$ A = -Id $
. We use the energy method in the Fourier space to establish several general decay results which improve many recent results in the literature. We also present two illustrative examples by the end.
Citation: Salim A. Messaoudi, Ilyes Lacheheb. A general decay result for the Cauchy problem of plate equations with memory. Evolution Equations and Control Theory, doi: 10.3934/eect.2022026
References:
[1]

W. Chen and T. A. Dao, On the Cauchy problem for semilinear regularity-loss-type $\sigma$-evolution models with memory term, Nonlinear Anal. Real World Appl., 59 (2021), 103265, 26 pp. doi: 10.1016/j.nonrwa.2020.103265.

[2]

C. R. da Luz and R. C. Charão, Asymptotic properties for a semilinear plate equation in unbounded domains, J. Hyperbolic Differ. Equ., 6 (2009), 269-294.  doi: 10.1142/S0219891609001824.

[3]

I. Lacheheb and S. A. Messaoudi, General decay of the Cauchy problem for a Moore-Gibson-Thompson equation with memory, Mediterr. J. Math., 18 (2021), Paper No. 171, 21 pp. doi: 10.1007/s00009-021-01818-1.

[4]

J. E. Lagnese, Asymptotic energy estimates for Kirchhoff plates subject to weak viscoelastic damping, Internat. Ser. Numer. Math., Birkhäuser-Verlag, Basel, 91 (1989), 211–236.

[5]

I. Lasiecka, Exponential decay rates for the solutions of Euler-Bernoulli equations with boundary dissipation occurring in the moments only, J. Differential Equations, 95 (1992), 169-182.  doi: 10.1016/0022-0396(92)90048-R.

[6]

I. Lasiecka, S. A. Messaoudi and M. I. Mustafa, Note on intrinsic decay rates for abstract wave equations with memory, J. Math. Phys., 54 (2013), 031504, 18 pp. doi: 10.1063/1.4793988.

[7]

Y. Liu, Decay of solutions to an inertial model for a semilinear plate equation with memory, J. Math. Anal. Appl., 394 (2012), 616-632.  doi: 10.1016/j.jmaa.2012.04.003.

[8]

Y. Liu, Asymptotic behavior of solutions to a nonlinear plate equation with memory, Commun. Pure Appl. Anal., 16 (2017), 533-556.  doi: 10.3934/cpaa.2017027.

[9]

Y. Liu and S. Kawashima, Decay property for a plate equation with memory-type dissipation, Kinet. Relat. Models, 4 (2011), 531-547.  doi: 10.3934/krm.2011.4.531.

[10]

Y. Liu and S. Kawashima, Global existence and decay of solutions for a quasi-linear dissipative plate equation, J. Hyperbolic Differ. Equ., 8 (2011), 591-614.  doi: 10.1142/S0219891611002500.

[11]

Y. Liu and Y. Ueda, Decay estimate and asymptotic profile for a plate equation with memory, J. Differential Equations, 268 (2020), 2435-2463.  doi: 10.1016/j.jde.2019.09.007.

[12]

S. Mao and Y. Liu, Decay of solutions to generalized plate type equations with memory, Kinet. Relat. Models, 7 (2014), 121-131.  doi: 10.3934/krm.2014.7.121.

[13]

J. E. Muñoz RiveraE. C. Lapa and R. Barreto, Decay rates for viscoelastic plates with memory, J. Elasticity, 44 (1996), 61-87.  doi: 10.1007/BF00042192.

[14]

J. E. Muñoz RiveraM. G. Naso and F. M. Vegni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory, J. Math. Anal. Appl., 286 (2003), 692-704.  doi: 10.1016/S0022-247X(03)00511-0.

[15]

J. E. Muñoz Rivera and Y. Shibata, A linear thermoelastic plate equation with Dirichlet boundary condition, Math. Methods Appl. Sci., 20 (1997), 915-932.  doi: 10.1002/(SICI)1099-1476(19970725)20:11<915::AID-MMA891>3.0.CO;2-4.

[16]

M. I. Mustafa, General decay result for nonlinear viscoelastic equations, J. Math. Anal. Appl., 457 (2018), 134-152.  doi: 10.1016/j.jmaa.2017.08.019.

[17]

M. I. Mustafa and S. A. Messaoudi, General stability result for viscoelastic wave equations, J. Math. Phys., 53 (2012), 053702, 14 pp. doi: 10.1063/1.4711830.

[18]

B. Said-Houari and S. A. Messaoudi, General decay estimates for a Cauchy viscoelastic wave problem, Commun. Pure Appl. Anal., 13 (2014), 1541-1551.  doi: 10.3934/cpaa.2014.13.1541.

[19]

Y. Sugitani and S. Kawashima, Decay estimates of solutions to a semilinear dissipative plate equation, J. Hyperbolic Differ. Equ., 7 (2010), 471-501.  doi: 10.1142/S0219891610002207.

[20]

R. Temam, Navier-Stokes equations, revised edition, Studies in Mathematics and its Applications, vol. 2, North-Holland, Amsterdam, New York, Oxford, 1979.

[21]

J. Wirth, Asymptotic Properties of Solutions to Wave Equations with Time-Dependent Dissipation, Ph.D thesis, TU Bergakademie Freiberg, 2004.

show all references

References:
[1]

W. Chen and T. A. Dao, On the Cauchy problem for semilinear regularity-loss-type $\sigma$-evolution models with memory term, Nonlinear Anal. Real World Appl., 59 (2021), 103265, 26 pp. doi: 10.1016/j.nonrwa.2020.103265.

[2]

C. R. da Luz and R. C. Charão, Asymptotic properties for a semilinear plate equation in unbounded domains, J. Hyperbolic Differ. Equ., 6 (2009), 269-294.  doi: 10.1142/S0219891609001824.

[3]

I. Lacheheb and S. A. Messaoudi, General decay of the Cauchy problem for a Moore-Gibson-Thompson equation with memory, Mediterr. J. Math., 18 (2021), Paper No. 171, 21 pp. doi: 10.1007/s00009-021-01818-1.

[4]

J. E. Lagnese, Asymptotic energy estimates for Kirchhoff plates subject to weak viscoelastic damping, Internat. Ser. Numer. Math., Birkhäuser-Verlag, Basel, 91 (1989), 211–236.

[5]

I. Lasiecka, Exponential decay rates for the solutions of Euler-Bernoulli equations with boundary dissipation occurring in the moments only, J. Differential Equations, 95 (1992), 169-182.  doi: 10.1016/0022-0396(92)90048-R.

[6]

I. Lasiecka, S. A. Messaoudi and M. I. Mustafa, Note on intrinsic decay rates for abstract wave equations with memory, J. Math. Phys., 54 (2013), 031504, 18 pp. doi: 10.1063/1.4793988.

[7]

Y. Liu, Decay of solutions to an inertial model for a semilinear plate equation with memory, J. Math. Anal. Appl., 394 (2012), 616-632.  doi: 10.1016/j.jmaa.2012.04.003.

[8]

Y. Liu, Asymptotic behavior of solutions to a nonlinear plate equation with memory, Commun. Pure Appl. Anal., 16 (2017), 533-556.  doi: 10.3934/cpaa.2017027.

[9]

Y. Liu and S. Kawashima, Decay property for a plate equation with memory-type dissipation, Kinet. Relat. Models, 4 (2011), 531-547.  doi: 10.3934/krm.2011.4.531.

[10]

Y. Liu and S. Kawashima, Global existence and decay of solutions for a quasi-linear dissipative plate equation, J. Hyperbolic Differ. Equ., 8 (2011), 591-614.  doi: 10.1142/S0219891611002500.

[11]

Y. Liu and Y. Ueda, Decay estimate and asymptotic profile for a plate equation with memory, J. Differential Equations, 268 (2020), 2435-2463.  doi: 10.1016/j.jde.2019.09.007.

[12]

S. Mao and Y. Liu, Decay of solutions to generalized plate type equations with memory, Kinet. Relat. Models, 7 (2014), 121-131.  doi: 10.3934/krm.2014.7.121.

[13]

J. E. Muñoz RiveraE. C. Lapa and R. Barreto, Decay rates for viscoelastic plates with memory, J. Elasticity, 44 (1996), 61-87.  doi: 10.1007/BF00042192.

[14]

J. E. Muñoz RiveraM. G. Naso and F. M. Vegni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory, J. Math. Anal. Appl., 286 (2003), 692-704.  doi: 10.1016/S0022-247X(03)00511-0.

[15]

J. E. Muñoz Rivera and Y. Shibata, A linear thermoelastic plate equation with Dirichlet boundary condition, Math. Methods Appl. Sci., 20 (1997), 915-932.  doi: 10.1002/(SICI)1099-1476(19970725)20:11<915::AID-MMA891>3.0.CO;2-4.

[16]

M. I. Mustafa, General decay result for nonlinear viscoelastic equations, J. Math. Anal. Appl., 457 (2018), 134-152.  doi: 10.1016/j.jmaa.2017.08.019.

[17]

M. I. Mustafa and S. A. Messaoudi, General stability result for viscoelastic wave equations, J. Math. Phys., 53 (2012), 053702, 14 pp. doi: 10.1063/1.4711830.

[18]

B. Said-Houari and S. A. Messaoudi, General decay estimates for a Cauchy viscoelastic wave problem, Commun. Pure Appl. Anal., 13 (2014), 1541-1551.  doi: 10.3934/cpaa.2014.13.1541.

[19]

Y. Sugitani and S. Kawashima, Decay estimates of solutions to a semilinear dissipative plate equation, J. Hyperbolic Differ. Equ., 7 (2010), 471-501.  doi: 10.1142/S0219891610002207.

[20]

R. Temam, Navier-Stokes equations, revised edition, Studies in Mathematics and its Applications, vol. 2, North-Holland, Amsterdam, New York, Oxford, 1979.

[21]

J. Wirth, Asymptotic Properties of Solutions to Wave Equations with Time-Dependent Dissipation, Ph.D thesis, TU Bergakademie Freiberg, 2004.

[1]

Baowei Feng, Abdelaziz Soufyane. New general decay results for a von Karman plate equation with memory-type boundary conditions. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1757-1774. doi: 10.3934/dcds.2020092

[2]

Gongwei Liu. The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term. Electronic Research Archive, 2020, 28 (1) : 263-289. doi: 10.3934/era.2020016

[3]

Yongqin Liu, Shuichi Kawashima. Decay property for a plate equation with memory-type dissipation. Kinetic and Related Models, 2011, 4 (2) : 531-547. doi: 10.3934/krm.2011.4.531

[4]

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064

[5]

Mohammad M. Al-Gharabli, Aissa Guesmia, Salim A. Messaoudi. Existence and a general decay results for a viscoelastic plate equation with a logarithmic nonlinearity. Communications on Pure and Applied Analysis, 2019, 18 (1) : 159-180. doi: 10.3934/cpaa.2019009

[6]

Shikuan Mao, Yongqin Liu. Decay of solutions to generalized plate type equations with memory. Kinetic and Related Models, 2014, 7 (1) : 121-131. doi: 10.3934/krm.2014.7.121

[7]

Tingting Liu, Qiaozhen Ma, Ling Xu. Attractor of the Kirchhoff type plate equation with memory and nonlinear damping on the whole time-dependent space. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022046

[8]

Wenjun Liu, Zhijing Chen, Zhiyu Tu. New general decay result for a fourth-order Moore-Gibson-Thompson equation with memory. Electronic Research Archive, 2020, 28 (1) : 433-457. doi: 10.3934/era.2020025

[9]

Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 491-506. doi: 10.3934/dcdsb.2017024

[10]

Nadjat Doudi, Salah Boulaaras, Nadia Mezouar, Rashid Jan. Global existence, general decay and blow-up for a nonlinear wave equation with logarithmic source term and fractional boundary dissipation. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022106

[11]

Mohammad Al-Gharabli, Mohamed Balegh, Baowei Feng, Zayd Hajjej, Salim A. Messaoudi. Existence and general decay of Balakrishnan-Taylor viscoelastic equation with nonlinear frictional damping and logarithmic source term. Evolution Equations and Control Theory, 2022, 11 (4) : 1149-1173. doi: 10.3934/eect.2021038

[12]

Yongqin Liu. Asymptotic behavior of solutions to a nonlinear plate equation with memory. Communications on Pure and Applied Analysis, 2017, 16 (2) : 533-556. doi: 10.3934/cpaa.2017027

[13]

Jinxing Liu, Xiongrui Wang, Jun Zhou, Xu Liu. Dynamics of solutions to a semilinear plate equation with memory. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3911-3936. doi: 10.3934/cpaa.2021137

[14]

Ralf Kirsch, Sergej Rjasanow. The uniformly heated inelastic Boltzmann equation in Fourier space. Kinetic and Related Models, 2010, 3 (3) : 445-456. doi: 10.3934/krm.2010.3.445

[15]

Wenjun Liu, Biqing Zhu, Gang Li, Danhua Wang. General decay for a viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, dynamic boundary conditions and a time-varying delay term. Evolution Equations and Control Theory, 2017, 6 (2) : 239-260. doi: 10.3934/eect.2017013

[16]

Salim A. Messaoudi, Jamilu Hashim Hassan. New general decay results in a finite-memory bresse system. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1637-1662. doi: 10.3934/cpaa.2019078

[17]

Kazumasa Fujiwara, Shuji Machihara, Tohru Ozawa. Remark on a semirelativistic equation in the energy space. Conference Publications, 2015, 2015 (special) : 473-478. doi: 10.3934/proc.2015.0473

[18]

Rachid Assel, Mohamed Ghazel. Energy decay for the damped wave equation on an unbounded network. Evolution Equations and Control Theory, 2018, 7 (3) : 335-351. doi: 10.3934/eect.2018017

[19]

Umberto Biccari, Mahamadi Warma. Null-controllability properties of a fractional wave equation with a memory term. Evolution Equations and Control Theory, 2020, 9 (2) : 399-430. doi: 10.3934/eect.2020011

[20]

Hizia Bounadja, Belkacem Said Houari. Decay rates for the Moore-Gibson-Thompson equation with memory. Evolution Equations and Control Theory, 2021, 10 (3) : 431-460. doi: 10.3934/eect.2020074

2021 Impact Factor: 1.169

Metrics

  • PDF downloads (159)
  • HTML views (37)
  • Cited by (0)

Other articles
by authors

[Back to Top]