In this paper, we consider a one-dimensional linear Bresse system with only one infinite memory term acting in the third equation (longitudinal displacements). Under a general condition on the memory kernel (relaxation function), we establish a decay estimate of the energy of the system. Our decay result extends and improves some decay rates obtained in the literature such as the one in [
Citation: |
[1] |
M. Afilal, A. Guesmia, A. Soufyane and M. Zahri, On the exponential and polynomial stability for a linear Bresse system, Math. Methods Appl. Sci., 43 (2020), 2626-2645.
doi: 10.1002/mma.6070.![]() ![]() ![]() |
[2] |
A. M. Al-Mahdi, General stability result for a viscoelastic plate equation with past history and general kernel, J. Math. Anal. Appl., 490 (2020), 124216, 19 pp.
doi: 10.1016/j.jmaa.2020.124216.![]() ![]() ![]() |
[3] |
A. M. Al-Mahdi, Stability result of a viscoelastic plate equation with past history and a logarithmic nonlinearity, Bound. Value Probl., 2020 (2020), Paper No. 84, 20 pp.
doi: 10.1186/s13661-020-01382-9.![]() ![]() ![]() |
[4] |
A. M. Al-Mahdi and M. M. Al-Gharabli, New general decay results in an infinite memory viscoelastic problem with nonlinear damping, Bound. Value Probl., 2019 (2019), Paper No. 140, 15 pp.
doi: 10.1186/s13661-019-1253-6.![]() ![]() ![]() |
[5] |
A. M. Al-Mahdi, M. M. Al-Gharabli and S. M. Ali, New stability result for a bresse system with one infinite memory in the shear angle equation, Discrete Contin. Dyn. Syst. Ser. S, 15 (2022), 995-1014.
doi: 10.3934/dcdss.2021086.![]() ![]() ![]() |
[6] |
A. M. Al-Mahdi, M. M. Al-Gharabli, A. Guesmia and S. A. Messaoudi, New decay results for a viscoelastic-type Timoshenko system with infinite memory, Z. Angew. Math. Phys., 72 (2021), Paper No. 22, 24 pp.
doi: 10.1007/s00033-020-01446-x.![]() ![]() ![]() |
[7] |
A. M. Al-Mahdi, M. M. Al-Gharabli, M. Kafini and S. Al-Omari, On the global existence and asymptotic behavior of the solution of a nonlinear wave equation with past history, J. Math. Phys., 62 (2021), Paper No. 031512, 15 pp.
doi: 10.1063/5.0003515.![]() ![]() ![]() |
[8] |
F. Alabau-Boussouira and P. Cannarsa, A general method for proving sharp energy decay rates for memory-dissipative evolution equations, C. R. Math. Acad. Sci. Paris, 347 (2009), 867-872.
doi: 10.1016/j.crma.2009.05.011.![]() ![]() ![]() |
[9] |
F. Alabau Boussouira, J. E. Muñoz Rivera and D. da S. Almeida Júnior, Stability to weak dissipative Bresse system, J. Math. Anal. Appl., 374 (2011), 481-498.
doi: 10.1016/j.jmaa.2010.07.046.![]() ![]() ![]() |
[10] |
J. A. D. Appleby, M. Fabrizio, B. Lazzari and D. W. Reynolds, On exponential asymptotic stability in linear viscoelasticity, Math. Models Methods Appl. Sci., 16 (2006), 1677-1694.
doi: 10.1142/S0218202506001674.![]() ![]() ![]() |
[11] |
V. I. Arnol'd, Mathematical Methods of Classical Mechanics, vol. 60, Springer-Verlag, New York-Heidelberg, 1978.
![]() ![]() |
[12] |
L. Boltzmann, Zur theorie der elastischen nachwirkung, Annalen der Physik, 241 (1878), 430-432.
![]() |
[13] |
J. A. C. Bresse, Cours de Mécanique Appliquée: Résistance des Matériaux et Stabilitédes Constructions, vol. 1, Mallet-Bachelier, 1859.
![]() |
[14] |
M. M. Cavalcanti and H. P. Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation, SIAM J. Control Optim., 42 (2003), 1310-1324.
doi: 10.1137/S0363012902408010.![]() ![]() ![]() |
[15] |
B. Chentouf, A minimal state approach to dynamic stabilization of the rotating disk-beam system with infinite memory, IEEE Trans. Automat. Control, 61 (2016), 3700-3706.
doi: 10.1109/TAC.2016.2518482.![]() ![]() ![]() |
[16] |
B. Chentouf and Z.-J. Han, On the elimination of infinite memory effects on the stability of a nonlinear non-homogeneous rotating body-beam system, Journal of Dynamics and Differential Equations, (2022), 1–25.
doi: 10.1007/s10884-021-10111-4.![]() ![]() |
[17] |
B. D. Coleman and V. J. Mizel, Norms and semi-groups in the theory of fading memory, Arch. Rational Mech. Anal., 23 (1966), 87-123.
doi: 10.1007/BF00251727.![]() ![]() ![]() |
[18] |
B. D. Coleman and W. Noll, On the thermostatics of continuous media, Arch. Rational Mech. Anal., 4 (1959), 97-128.
doi: 10.1007/BF00281381.![]() ![]() ![]() |
[19] |
B. D. Coleman and W. Noll, Foundations of linear viscoelasticity, Rev. Modern Phys., 33 (1961), 239-249.
doi: 10.1103/RevModPhys.33.239.![]() ![]() ![]() |
[20] |
M. Conti and V. Pata, Weakly dissipative semilinear equations of viscoelasticity, Commun. Pure Appl. Anal., 4 (2005), 705-720.
doi: 10.3934/cpaa.2005.4.705.![]() ![]() ![]() |
[21] |
C. M. Dafermos, An abstract Volterra equation with applications to linear viscoelasticity, J. Differential Equations, 7 (1970), 554-569.
doi: 10.1016/0022-0396(70)90101-4.![]() ![]() ![]() |
[22] |
C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.
doi: 10.1007/BF00251609.![]() ![]() ![]() |
[23] |
G. Dassios and F. Zafiropoulos, Equipartition of energy in linearized $3$-D viscoelasticity, Quart. Appl. Math., 48 (1990), 715-730.
doi: 10.1090/qam/1079915.![]() ![]() ![]() |
[24] |
L. H. Fatori and R. N. Monteiro, The optimal decay rate for a weak dissipative Bresse system, Appl. Math. Lett., 25 (2012), 600-604.
doi: 10.1016/j.aml.2011.09.067.![]() ![]() ![]() |
[25] |
L. H. Fatori and J. E. M. Rivera, Rates of decay to weak thermoelastic Bresse system, IMA Journal of Applied Mathematics, 75 (2010), 881-904.
![]() |
[26] |
C. Giorgi, J. E. Muñoz Rivera and V. Pata, Global attractors for a semilinear hyperbolic equation in viscoelasticity, J. Math. Anal. Appl., 260 (2001), 83-99.
doi: 10.1006/jmaa.2001.7437.![]() ![]() ![]() |
[27] |
A. Guesmia, Asymptotic stability of abstract dissipative systems with infinite memory, J. Math. Anal. Appl., 382 (2011), 748-760.
doi: 10.1016/j.jmaa.2011.04.079.![]() ![]() ![]() |
[28] |
A. Guesmia, Asymptotic stability of Bresse system with one infinite memory in the longitudinal displacements, Mediterr. J. Math., 14 (2017), Paper No. 49, 19 pp.
doi: 10.1007/s00009-017-0877-y.![]() ![]() ![]() |
[29] |
A. Guesmia, Non-exponential and polynomial stability results of a Bresse system with one infinite memory in the vertical displacement, Nonauton. Dyn. Syst., 4 (2017), 78-97.
doi: 10.1515/msds-2017-0008.![]() ![]() ![]() |
[30] |
A. Guesmia, New general decay rates of solutions for two viscoelastic wave equations with infinite memory, Math. Model. Anal., 25 (2020), 351-373.
doi: 10.3846/mma.2020.10458.![]() ![]() ![]() |
[31] |
A. Guesmia and M. Kafini, Bresse system with infinite memories, Math. Methods Appl. Sci., 38 (2015), 2389-2402.
doi: 10.1002/mma.3228.![]() ![]() ![]() |
[32] |
A. Guesmia and M. Kirane, Uniform and weak stability of Bresse system with two infinite memories, Z. Angew. Math. Phys., 67 (2016), Art. 124, 39 pp.
doi: 10.1007/s00033-016-0719-y.![]() ![]() ![]() |
[33] |
A. Guesmia and S. A. Messaoudi, A new approach to the stability of an abstract system in the presence of infinite history, Journal of Mathematical Analysis and Applications, 416 (2014), 212-228.
doi: 10.1016/j.jmaa.2014.02.030.![]() ![]() |
[34] |
A. Guesmia and N.-E. Tatar, Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay, Commun. Pure Appl. Anal., 14 (2015), 457-491.
doi: 10.3934/cpaa.2015.14.457.![]() ![]() ![]() |
[35] |
X. Han and M. Wang, General decay estimate of energy for the second order evolution equations with memory, Acta Appl. Math., 110 (2010), 195-207.
doi: 10.1007/s10440-008-9397-x.![]() ![]() ![]() |
[36] |
W. J. Hrusa, Global existence and asymptotic stability for a semilinear hyperbolic volterra equation with large initial data, SIAM J. Math. Anal., 16 (1985), 110-134.
doi: 10.1137/0516007.![]() ![]() ![]() |
[37] |
J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modelling of dynamic networks of thin thermoelastic beams, Math. Methods Appl. Sci., 16 (1993), 327-358.
doi: 10.1002/mma.1670160503.![]() ![]() ![]() |
[38] |
I. Lasiecka, S. A. Messaoudi and M. I. Mustafa, Note on intrinsic decay rates for abstract wave equations with memory, J. Math. Phys., 54 (2013), 031504, 18 pp.
doi: 10.1063/1.4793988.![]() ![]() ![]() |
[39] |
Z. Liu and B. Rao, Energy decay rate of the thermoelastic Bresse system, Z. Angew. Math. Phys., 60 (2009), 54-69.
doi: 10.1007/s00033-008-6122-6.![]() ![]() ![]() |
[40] |
S. A. Messaoudi, General decay of solutions of a viscoelastic equation, J. Math. Anal. Appl., 341 (2008), 1457-1467.
doi: 10.1016/j.jmaa.2007.11.048.![]() ![]() ![]() |
[41] |
J. E. Muñoz Rivera, Asymptotic behaviour in linear viscoelasticity, Quart. Appl. Math., 52 (1994), 629-648.
doi: 10.1090/qam/1306041.![]() ![]() ![]() |
[42] |
J. E. Muñoz Rivera and E. Cabanillas Lapa, Decay rates of solutions of an anisotropic inhomogeneous $n$-dimensional viscoelastic equation with polynomially decaying kernels, Comm. Math. Phys., 177 (1996), 583-602.
doi: 10.1007/BF02099539.![]() ![]() ![]() |
[43] |
J. E. Muñoz Rivera, E. C. Lapa and R. Barreto, Decay rates for viscoelastic plates with memory, J. Elasticity, 44 (1996), 61-87.
doi: 10.1007/BF00042192.![]() ![]() ![]() |
[44] |
J. E. Muñoz Rivera and H. P. Oquendo, Exponential stability to a contact problem of partially viscoelastic materials, J. Elasticity, 63 (2001), 87-111.
doi: 10.1023/A:1014091825772.![]() ![]() ![]() |
[45] |
J. E. Muñoz Rivera and A. Peres Salvatierra, Asymptotic behaviour of the energy in partially viscoelastic materials, Quart. Appl. Math., 59 (2001), 557-578.
doi: 10.1090/qam/1848535.![]() ![]() ![]() |
[46] |
M. I. Mustafa, Optimal decay rates for the viscoelastic wave equation, Mathematical Methods in the Applied Sciences, 41 (2018), 192-204.
doi: 10.1002/mma.4604.![]() ![]() |
[47] |
M. I. Mustafa, Energy decay in a quasilinear system with finite and infinite memories, in Mathematical Methods in Engineering, Springer, 2019,235–256.
![]() ![]() |
[48] |
N. Najdi and A. Wehbe, Weakly locally thermal stabilization of Bresse systems, Electron. J. Differential Equations, (2014), No. 182, 19 pp.
![]() ![]() |
[49] |
W. Noll, A new mathematical theory of simple materials, Arch. Rational Mech. Anal., 48 (1972), 1-50.
doi: 10.1007/BF00253367.![]() ![]() ![]() |
[50] |
V. Pata, Stability and exponential stability in linear viscoelasticity, Milan J. Math., 77 (2009), 333-360.
doi: 10.1007/s00032-009-0098-3.![]() ![]() ![]() |
[51] |
M. de L. Santos, A. Soufyane and D. da S. Almeida Júnior, Asymptotic behavior to Bresse system with past history, Quart. Appl. Math., 73 (2015), 23-54.
doi: 10.1090/S0033-569X-2014-01382-4.![]() ![]() ![]() |
[52] |
M. L. Santos and D. da S. Almeida Júnior, Numerical exponential decay to dissipative Bresse system, J. Appl. Math., 2010, (2010), Art. ID 848620, 17 pp.
doi: 10.1155/2010/848620.![]() ![]() ![]() |
[53] |
J. A. Soriano, W. Charles and R. Schulz, Asymptotic stability for Bresse systems, J. Math. Anal. Appl., 412 (2014), 369-380.
doi: 10.1016/j.jmaa.2013.10.019.![]() ![]() ![]() |
[54] |
A. Soufyane and B. Said-Houari, The effect of the wave speeds and the frictional damping terms on the decay rate of the Bresse system, Evol. Equ. Control Theory, 3 (2014), 713-738.
doi: 10.3934/eect.2014.3.713.![]() ![]() ![]() |
[55] |
V. Volterra, Sur les équations intégro-différentielles et leurs applications, Acta Math., 35 (1912), 295-356.
doi: 10.1007/BF02418820.![]() ![]() ![]() |
[56] |
C.-C. Wang, The principle of fading memory, Arch. Rational Mech. Anal., 18 (1965), 343-366.
doi: 10.1007/BF00281325.![]() ![]() ![]() |
[57] |
A. Wehbe and W. Youssef, Exponential and polynomial stability of an elastic Bresse system with two locally distributed feedbacks, J. Math. Phys., 51 (2010), 103523, 17 pp.
doi: 10.1063/1.3486094.![]() ![]() ![]() |
[58] |
A. Youkana, Stability of an abstract system with infinite history, arXiv preprint, arXiv: 1805.07964.
![]() |
Test 1: The approximate solution
Test 1: Energy decay
Test 2: The approximate solution
Test 2: Energy decay
Test 3: The approximate solution
Test 3: Energy decay