\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Controllability of a simplified time-discrete stabilized Kuramoto-Sivashinsky system

The author is supported by the program "Estancias posdoctorales por México" of CONACyT, Mexico and by Project IN109522 of DGAPA-UNAM, Mexico

Abstract / Introduction Full Text(HTML) Figure(1) Related Papers Cited by
  • In this paper, we study some controllability and observability properties for a coupled system of time-discrete fourth- and second-order parabolic equations. This system can be regarded as a simplification of the well-known stabilized Kumamoto-Sivashinsky equation. Unlike the continuous case, we can prove only a relaxed observability inequality which yields a $ \phi(\triangle t) $-controllability result. This result tells that we cannot reach exactly zero but rather a small target whose size goes to 0 as the discretization parameter $ \triangle t $ goes to 0. The proof relies on a known Carleman estimate for second-order time-discrete parabolic operators and a new Carleman estimate for the time-discrete fourth-order equation.

    Mathematics Subject Classification: Primary: 93C55, 93B05; Secondary: 35K52.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Discretization of the time variable and its notation

  • [1] D. Allonsius and F. Boyer, Boundary null-controllability of semi-discrete coupled parabolic systems in some multi-dimensional geometries, Math. Control Relat. Fields, 10 (2020), 217-256.  doi: 10.3934/mcrf.2019037.
    [2] F. Ammar-KhodjaF. Chouly and M. Duprez, Partial null controllability of parabolic linear systems, Math. Control Relat. Fields, 6 (2016), 185-216.  doi: 10.3934/mcrf.2016001.
    [3] K. BhandariF. Boyer and V. Hernández-Santamaría, Boundary null-controllability of 1-D coupled parabolic systems with Kirchhoff-type conditions, Math. Control Signals Systems, 33 (2021), 413-471.  doi: 10.1007/s00498-021-00285-z.
    [4] U. BiccariM. Warma and E. Zuazua, Control and numerical approximation of fractional diffusion equations, Handbook of Numerical Analysis XXIII. Numerical Control: Part A, 23 (2022), 1-58.  doi: 10.1016/bs.hna.2021.12.001.
    [5] F. Boyer, On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems, in CANUM 2012, 41e Congrès National d'Analyse Numérique, vol. 41 of ESAIM Proc., EDP Sci., Les Ulis, 2013, 15-58. doi: 10.1051/proc/201341002.
    [6] F. Boyer and V. Hernández-Santamaría, Carleman estimates for time-discrete parabolic equations and applications to controllability, ESAIM Control Optim. Calc. Var., 26 (2020), Paper No. 12, 43 pp. doi: 10.1051/cocv/2019072.
    [7] F. BoyerV. Hernández-Santamaría and L. de Teresa, Insensitizing controls for a semilinear parabolic equation: A numerical approach, Math. Control Relat. Fields, 9 (2019), 117-158.  doi: 10.3934/mcrf.2019007.
    [8] F. BoyerF. Hubert and J. Le Rousseau, Discrete Carleman estimates for elliptic operators in arbitrary dimension and applications, SIAM J. Control Optim., 48 (2010), 5357-5397.  doi: 10.1137/100784278.
    [9] F. BoyerF. Hubert and J. Le Rousseau, Uniform controllability properties for space/time-discretized parabolic equations, Numer. Math., 118 (2011), 601-661.  doi: 10.1007/s00211-011-0368-1.
    [10] F. Boyer and J. Le Rousseau, Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 1035-1078.  doi: 10.1016/j.anihpc.2013.07.011.
    [11] N. Carreño and E. Cerpa, Local controllability of the stabilized Kuramoto-Sivashinsky system by a single control acting on the heat equation, J. Math. Pures Appl. (9), 106 (2016), 670-694.  doi: 10.1016/j.matpur.2016.03.007.
    [12] N. Carreño, E. Cerpa and A. Mercado, Boundary controllability of a cascade system coupling fourth- and second-order parabolic equations, Systems Control Lett., 133 (2019), 104542, 7 pp. doi: 10.1016/j.sysconle.2019.104542.
    [13] N. Carreño and P. Guzmán, On the cost of null controllability of a fourth-order parabolic equation, J. Differential Equations, 261 (2016), 6485-6520.  doi: 10.1016/j.jde.2016.08.042.
    [14] E. CerpaR. LecarosT. N. T. Nguyen and A. Pérez, Carleman estimates and controllability for a semi-discrete fourth-order parabolic equation, J. Math. Pures Appl. (9), 164 (2022), 93-130.  doi: 10.1016/j.matpur.2022.06.003.
    [15] E. CerpaA. Mercado and A. F. Pazoto, On the boundary control of a parabolic system coupling KS-KdV and heat equations, Sci. Ser. A Math. Sci. (N.S.), 22 (2012), 55-74. 
    [16] E. CerpaA. Mercado and A. F. Pazoto, Null controllability of the stabilized Kuramoto-Sivashinsky system with one distributed control, SIAM J. Control Optim., 53 (2015), 1543-1568.  doi: 10.1137/130947969.
    [17] S. Ervedoza, J. Lemoine and A. Munch, Exact controllability of semilinear heat equations through a constructive approach, preprint, 2021.
    [18] S. Ervedoza and J. Valein, On the observability of abstract time-discrete linear parabolic equations, Rev. Mat. Complut., 23 (2010), 163-190.  doi: 10.1007/s13163-009-0014-y.
    [19] S. ErvedozaC. Zheng and E. Zuazua, On the observability of time-discrete conservative linear systems, J. Funct. Anal., 254 (2008), 3037-3078.  doi: 10.1016/j.jfa.2008.03.005.
    [20] S. Ervedoza and E. Zuazua, Transmutation techniques and observability for time-discrete approximation schemes of conservative systems, Numer. Math., 130 (2015), 425-466.  doi: 10.1007/s00211-014-0668-3.
    [21] L. C. Evans, Partial Differential Equations, vol. 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, second ed., 2010. doi: 10.1090/gsm/019.
    [22] B.-F. FengB. A. Malomed and T. Kawahara, Cylindrical solitary pulses in a two-dimensional stabilized Kuramoto-Sivashinsky system, Phys. D, 175 (2003), 127-138.  doi: 10.1016/S0167-2789(02)00721-2.
    [23] E. Fernández-CaraM. González-BurgosS. Guerrero and J.-P. Puel, Null controllability of the heat equation with boundary Fourier conditions: the linear case, ESAIM Control Optim. Calc. Var., 12 (2006), 442-465.  doi: 10.1051/cocv:2006010.
    [24] E. Fernández-Cara and A. Münch, Numerical null controllability of semi-linear 1-D heat equations: Fixed point, least squares and Newton methods, Math. Control Relat. Fields, 2 (2012), 217-246.  doi: 10.3934/mcrf.2012.2.217.
    [25] A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, vol. 34 of Lecture Notes Series, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.
    [26] R. Glowinski, J.-L. Lions and J. He, Exact and Approximate Controllability for Distributed Parameter Systems. A Numerical Approach, vol. 117 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2008. doi: 10.1017/CBO9780511721595.
    [27] M. González-Burgos and L. de Teresa, Controllability results for cascade systems of m coupled parabolic PDEs by one control force, Port. Math., 67 (2010), 91-113.  doi: 10.4171/PM/1859.
    [28] P. González Casanova and V. Hernández-Santamaría, Carleman estimates and controllability results for fully discrete approximations of 1D parabolic equations, Adv. Comput. Math., 47 (2021), Paper No. 72, 71 pp. doi: 10.1007/s10444-021-09885-4.
    [29] S. Guerrero, Null controllability of some systems of two parabolic equations with one control force, SIAM J. Control Optim., 46 (2007), 379-394.  doi: 10.1137/060653135.
    [30] S. Guerrero and K. Kassab, Carleman estimate and null controllability of a fourth order parabolic equation in dimension $N\geq2$, J. Math. Pures Appl. (9), 121 (2019), 135-161.  doi: 10.1016/j.matpur.2018.04.004.
    [31] V. Hernández-Santamaría, A. Mercado and P. Visconti, Boundary controllability of a simplified stabilized Kuramoto-Sivashinsky system, preprint, 2020.
    [32] V. Hernández-Santamaría and L. Peralta, Controllability results for stochastic coupled systems of fourth- and second-order parabolic equations, J. Evol. Equ., 22 (2022), Paper No. 23, 51 pp. doi: 10.1007/s00028-022-00758-x.
    [33] S. Labbé and E. Trélat, Uniform controllability of semidiscrete approximations of parabolic control systems, Systems Control Lett., 55 (2006), 597-609.  doi: 10.1016/j.sysconle.2006.01.004.
    [34] R. Lecaros, J. H. Ortega and A. Pérez, Stability estimate for the semi-discrete linearized Benjamin-Bona-Mahony equation, ESAIM Control Optim. Calc. Var., 27 (2021), Paper No. 93, 30 pp. doi: 10.1051/cocv/2021087.
    [35] J. Lemoine, I. Marín-Gayte and A. Münch, Approximation of null controls for semilinear heat equations using a least-squares approach, ESAIM Control Optim. Calc. Var., 27 (2021), Paper No. 63, 28 pp. doi: 10.1051/cocv/2021062.
    [36] J. Lemoine and A. Münch, Constructive exact control of semilinear 1D heat equations, Math. Control Relat. Fields, (2022). doi: 10.3934/mcrf.2022001.
    [37] X. Liu, Controllability of some coupled stochastic parabolic systems with fractional order spatial differential operators by one control in the drift, SIAM J. Control Optim., 52 (2014), 836-860.  doi: 10.1137/130926791.
    [38] A. Münch and D. A. Souza, A mixed formulation for the direct approximation of $L^2$-weighted controls for the linear heat equation, Adv. Comput. Math., 42 (2016), 85-125.  doi: 10.1007/s10444-015-9412-5.
    [39] X. ZhangC. Zheng and E. Zuazua, Time discrete wave equations: boundary observability and control, Discrete Contin. Dyn. Syst., 23 (2009), 571-604.  doi: 10.3934/dcds.2009.23.571.
    [40] C. Zheng, Controllability of the time discrete heat equation, Asymptot. Anal., 59 (2008), 139-177.  doi: 10.3233/ASY-2008-0888.
    [41] Z. Zhou, Observability estimate and null controllability for one-dimensional fourth order parabolic equation, Taiwanese J. Math., 16 (2012), 1991-2017.  doi: 10.11650/twjm/1500406835.
    [42] E. Zuazua, Propagation, observation, and control of waves approximated by finite difference methods, SIAM Rev., 47 (2005), 197-243.  doi: 10.1137/S0036144503432862.
  • 加载中

Figures(1)

SHARE

Article Metrics

HTML views(1889) PDF downloads(227) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return