In this paper, we study some controllability and observability properties for a coupled system of time-discrete fourth- and second-order parabolic equations. This system can be regarded as a simplification of the well-known stabilized Kumamoto-Sivashinsky equation. Unlike the continuous case, we can prove only a relaxed observability inequality which yields a $ \phi(\triangle t) $-controllability result. This result tells that we cannot reach exactly zero but rather a small target whose size goes to 0 as the discretization parameter $ \triangle t $ goes to 0. The proof relies on a known Carleman estimate for second-order time-discrete parabolic operators and a new Carleman estimate for the time-discrete fourth-order equation.
Citation: |
[1] | D. Allonsius and F. Boyer, Boundary null-controllability of semi-discrete coupled parabolic systems in some multi-dimensional geometries, Math. Control Relat. Fields, 10 (2020), 217-256. doi: 10.3934/mcrf.2019037. |
[2] | F. Ammar-Khodja, F. Chouly and M. Duprez, Partial null controllability of parabolic linear systems, Math. Control Relat. Fields, 6 (2016), 185-216. doi: 10.3934/mcrf.2016001. |
[3] | K. Bhandari, F. Boyer and V. Hernández-Santamaría, Boundary null-controllability of 1-D coupled parabolic systems with Kirchhoff-type conditions, Math. Control Signals Systems, 33 (2021), 413-471. doi: 10.1007/s00498-021-00285-z. |
[4] | U. Biccari, M. Warma and E. Zuazua, Control and numerical approximation of fractional diffusion equations, Handbook of Numerical Analysis XXIII. Numerical Control: Part A, 23 (2022), 1-58. doi: 10.1016/bs.hna.2021.12.001. |
[5] | F. Boyer, On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems, in CANUM 2012, 41e Congrès National d'Analyse Numérique, vol. 41 of ESAIM Proc., EDP Sci., Les Ulis, 2013, 15-58. doi: 10.1051/proc/201341002. |
[6] | F. Boyer and V. Hernández-Santamaría, Carleman estimates for time-discrete parabolic equations and applications to controllability, ESAIM Control Optim. Calc. Var., 26 (2020), Paper No. 12, 43 pp. doi: 10.1051/cocv/2019072. |
[7] | F. Boyer, V. Hernández-Santamaría and L. de Teresa, Insensitizing controls for a semilinear parabolic equation: A numerical approach, Math. Control Relat. Fields, 9 (2019), 117-158. doi: 10.3934/mcrf.2019007. |
[8] | F. Boyer, F. Hubert and J. Le Rousseau, Discrete Carleman estimates for elliptic operators in arbitrary dimension and applications, SIAM J. Control Optim., 48 (2010), 5357-5397. doi: 10.1137/100784278. |
[9] | F. Boyer, F. Hubert and J. Le Rousseau, Uniform controllability properties for space/time-discretized parabolic equations, Numer. Math., 118 (2011), 601-661. doi: 10.1007/s00211-011-0368-1. |
[10] | F. Boyer and J. Le Rousseau, Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 1035-1078. doi: 10.1016/j.anihpc.2013.07.011. |
[11] | N. Carreño and E. Cerpa, Local controllability of the stabilized Kuramoto-Sivashinsky system by a single control acting on the heat equation, J. Math. Pures Appl. (9), 106 (2016), 670-694. doi: 10.1016/j.matpur.2016.03.007. |
[12] | N. Carreño, E. Cerpa and A. Mercado, Boundary controllability of a cascade system coupling fourth- and second-order parabolic equations, Systems Control Lett., 133 (2019), 104542, 7 pp. doi: 10.1016/j.sysconle.2019.104542. |
[13] | N. Carreño and P. Guzmán, On the cost of null controllability of a fourth-order parabolic equation, J. Differential Equations, 261 (2016), 6485-6520. doi: 10.1016/j.jde.2016.08.042. |
[14] | E. Cerpa, R. Lecaros, T. N. T. Nguyen and A. Pérez, Carleman estimates and controllability for a semi-discrete fourth-order parabolic equation, J. Math. Pures Appl. (9), 164 (2022), 93-130. doi: 10.1016/j.matpur.2022.06.003. |
[15] | E. Cerpa, A. Mercado and A. F. Pazoto, On the boundary control of a parabolic system coupling KS-KdV and heat equations, Sci. Ser. A Math. Sci. (N.S.), 22 (2012), 55-74. |
[16] | E. Cerpa, A. Mercado and A. F. Pazoto, Null controllability of the stabilized Kuramoto-Sivashinsky system with one distributed control, SIAM J. Control Optim., 53 (2015), 1543-1568. doi: 10.1137/130947969. |
[17] | S. Ervedoza, J. Lemoine and A. Munch, Exact controllability of semilinear heat equations through a constructive approach, preprint, 2021. |
[18] | S. Ervedoza and J. Valein, On the observability of abstract time-discrete linear parabolic equations, Rev. Mat. Complut., 23 (2010), 163-190. doi: 10.1007/s13163-009-0014-y. |
[19] | S. Ervedoza, C. Zheng and E. Zuazua, On the observability of time-discrete conservative linear systems, J. Funct. Anal., 254 (2008), 3037-3078. doi: 10.1016/j.jfa.2008.03.005. |
[20] | S. Ervedoza and E. Zuazua, Transmutation techniques and observability for time-discrete approximation schemes of conservative systems, Numer. Math., 130 (2015), 425-466. doi: 10.1007/s00211-014-0668-3. |
[21] | L. C. Evans, Partial Differential Equations, vol. 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, second ed., 2010. doi: 10.1090/gsm/019. |
[22] | B.-F. Feng, B. A. Malomed and T. Kawahara, Cylindrical solitary pulses in a two-dimensional stabilized Kuramoto-Sivashinsky system, Phys. D, 175 (2003), 127-138. doi: 10.1016/S0167-2789(02)00721-2. |
[23] | E. Fernández-Cara, M. González-Burgos, S. Guerrero and J.-P. Puel, Null controllability of the heat equation with boundary Fourier conditions: the linear case, ESAIM Control Optim. Calc. Var., 12 (2006), 442-465. doi: 10.1051/cocv:2006010. |
[24] | E. Fernández-Cara and A. Münch, Numerical null controllability of semi-linear 1-D heat equations: Fixed point, least squares and Newton methods, Math. Control Relat. Fields, 2 (2012), 217-246. doi: 10.3934/mcrf.2012.2.217. |
[25] | A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, vol. 34 of Lecture Notes Series, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996. |
[26] | R. Glowinski, J.-L. Lions and J. He, Exact and Approximate Controllability for Distributed Parameter Systems. A Numerical Approach, vol. 117 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2008. doi: 10.1017/CBO9780511721595. |
[27] | M. González-Burgos and L. de Teresa, Controllability results for cascade systems of m coupled parabolic PDEs by one control force, Port. Math., 67 (2010), 91-113. doi: 10.4171/PM/1859. |
[28] | P. González Casanova and V. Hernández-Santamaría, Carleman estimates and controllability results for fully discrete approximations of 1D parabolic equations, Adv. Comput. Math., 47 (2021), Paper No. 72, 71 pp. doi: 10.1007/s10444-021-09885-4. |
[29] | S. Guerrero, Null controllability of some systems of two parabolic equations with one control force, SIAM J. Control Optim., 46 (2007), 379-394. doi: 10.1137/060653135. |
[30] | S. Guerrero and K. Kassab, Carleman estimate and null controllability of a fourth order parabolic equation in dimension $N\geq2$, J. Math. Pures Appl. (9), 121 (2019), 135-161. doi: 10.1016/j.matpur.2018.04.004. |
[31] | V. Hernández-Santamaría, A. Mercado and P. Visconti, Boundary controllability of a simplified stabilized Kuramoto-Sivashinsky system, preprint, 2020. |
[32] | V. Hernández-Santamaría and L. Peralta, Controllability results for stochastic coupled systems of fourth- and second-order parabolic equations, J. Evol. Equ., 22 (2022), Paper No. 23, 51 pp. doi: 10.1007/s00028-022-00758-x. |
[33] | S. Labbé and E. Trélat, Uniform controllability of semidiscrete approximations of parabolic control systems, Systems Control Lett., 55 (2006), 597-609. doi: 10.1016/j.sysconle.2006.01.004. |
[34] | R. Lecaros, J. H. Ortega and A. Pérez, Stability estimate for the semi-discrete linearized Benjamin-Bona-Mahony equation, ESAIM Control Optim. Calc. Var., 27 (2021), Paper No. 93, 30 pp. doi: 10.1051/cocv/2021087. |
[35] | J. Lemoine, I. Marín-Gayte and A. Münch, Approximation of null controls for semilinear heat equations using a least-squares approach, ESAIM Control Optim. Calc. Var., 27 (2021), Paper No. 63, 28 pp. doi: 10.1051/cocv/2021062. |
[36] | J. Lemoine and A. Münch, Constructive exact control of semilinear 1D heat equations, Math. Control Relat. Fields, (2022). doi: 10.3934/mcrf.2022001. |
[37] | X. Liu, Controllability of some coupled stochastic parabolic systems with fractional order spatial differential operators by one control in the drift, SIAM J. Control Optim., 52 (2014), 836-860. doi: 10.1137/130926791. |
[38] | A. Münch and D. A. Souza, A mixed formulation for the direct approximation of $L^2$-weighted controls for the linear heat equation, Adv. Comput. Math., 42 (2016), 85-125. doi: 10.1007/s10444-015-9412-5. |
[39] | X. Zhang, C. Zheng and E. Zuazua, Time discrete wave equations: boundary observability and control, Discrete Contin. Dyn. Syst., 23 (2009), 571-604. doi: 10.3934/dcds.2009.23.571. |
[40] | C. Zheng, Controllability of the time discrete heat equation, Asymptot. Anal., 59 (2008), 139-177. doi: 10.3233/ASY-2008-0888. |
[41] | Z. Zhou, Observability estimate and null controllability for one-dimensional fourth order parabolic equation, Taiwanese J. Math., 16 (2012), 1991-2017. doi: 10.11650/twjm/1500406835. |
[42] | E. Zuazua, Propagation, observation, and control of waves approximated by finite difference methods, SIAM Rev., 47 (2005), 197-243. doi: 10.1137/S0036144503432862. |
Discretization of the time variable and its notation