In this paper, we consider a mechanochemical model in biological patterns in $ \mathbb{R}^N $, $ N\geq 5 $. We first prove the existence of time periodic solution in $ BC(\mathbb{R}; L^{N,\infty}(\Omega)) $. Then we obtain the existence, uniqueness and regularity of the mild solution of the problem. Finally, we prove that the mild solution can become strong solution in $ BC(\mathbb{R}; L^{N,\infty}(\Omega)) $.
Citation: |
[1] |
O. A. Barraza, Self-similar solutions in weak $L^p$-spaces of the Navier-Stokes equations, Rev. Mat. Iberoamericana, 12 (1996), 411-439.
doi: 10.4171/RMI/202.![]() ![]() ![]() |
[2] |
C. Du and C. Liu, Time periodic solution to a two-species chemotaxis-Stokes system with $p$-Laplacian diffusion, Commun. Pure Appl. Anal., 20 (2021), 4321-4345.
doi: 10.3934/cpaa.2021162.![]() ![]() ![]() |
[3] |
T. Eiter, M. Kyed and Y. Shibata, On periodic solutions for one-phase and two-phase problems of the Navier-Stokes equations, J. Evol. Equ., 21 (2021), 2955-3014.
doi: 10.1007/s00028-020-00619-5.![]() ![]() ![]() |
[4] |
Y. Fujishima, T. Kawakami and Y. Sire, Critical exponent for the global existence of solutions to a semilinear heat equation with degenerate coefficients, Calc. Var. Partial Differential Equations, 58 (2019), Paper No. 62, 25 pp..
doi: 10.1007/s00526-019-1525-0.![]() ![]() ![]() |
[5] |
J. Huang and C. Jin, Time periodic solution to a coupled chemotaxis-fluid model with porous medium diffusion, Discrete Contin. Dyn. Syst., 40 (2020), 5415-5439.
doi: 10.3934/dcds.2020233.![]() ![]() ![]() |
[6] |
C. Jin, Periodic pattern formation in the coupled chemotaxis-(Navier-)Stokes system with mixed nonhomogeneous boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, 150 (2020), 3121-3152.
doi: 10.1017/prm.2019.62.![]() ![]() ![]() |
[7] |
H. Kozono and M. Nakao, Periodic solutions of the Navier-Stokes equations in unbounded domains, Tohoku Math. J., 48 (1996), 33-50.
doi: 10.2748/tmj/1178225411.![]() ![]() ![]() |
[8] |
A. Liu and C. Liu, Asymptotic dynamics of a new mechanochemical model in biological patterns, Math. Model Anal., 22 (2017), 252-269.
doi: 10.3846/13926292.2017.1292324.![]() ![]() ![]() |
[9] |
C. Liu and P. Li, Time periodic solutions for a two-species chemotaxis-Navier-Stokes system, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 4567-4585.
doi: 10.3934/dcdsb.2020303.![]() ![]() ![]() |
[10] |
C. Liu and X. Zhang, Optimal distributed control for a new mechanochemical model in biological patterns, J. Math. Anal. Appl., 478 (2019), 825-863.
doi: 10.1016/j.jmaa.2019.05.057.![]() ![]() ![]() |
[11] |
C. Liu and X. Zhang, Optimal control of a new mechanochemical model with state constraint, Math. Methods Appl. Sci., 44 (2021), 9237-9263.
doi: 10.1002/mma.7350.![]() ![]() ![]() |
[12] |
P. Magal and S. Ruan, On integrated semigroups and age structured models in $L^p$ spaces, Differential Integral Equations, 20 (2007), 197-239.
![]() ![]() |
[13] |
M. Majdoub, S. Otsmane and S. Tayachi, Local well-posedness and global existence for the biharmonic heat equation with exponential nonlinearity, Adv. Differential Equations, 23 (2018), 489-522.
![]() ![]() |
[14] |
P. Maremonti, A remark on the Stokes problem in Lorentz spaces, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 1323-1342.
doi: 10.3934/dcdss.2013.6.1323.![]() ![]() ![]() |
[15] |
T. Miyakawa and M. Yamada, Planar Navier-Stokes flows in a bounded domain with measures as initial vorticities, Hiroshima Math. J., 22 (1992), 401-420.
doi: 10.32917/hmj/1206392908.![]() ![]() ![]() |
[16] |
M. A. Morales, J. F. Rojas, J. Oliveros and A. A. Hernández S., A new mechanochemical model: Coupled Ginzburg-Landau and Swift-Hohenberg equations in biological patterns of marine animals, Journal of Theoretical Biology, 368 (2015), 37-54.
doi: 10.1016/j.jtbi.2014.12.005.![]() ![]() ![]() |
[17] |
M. A. Morales, J. F. Rojas, I. Torres and E. Rubio, Modeling ternary mixtures by mean-field theory of polyelectrolytes: Coupled Ginzburg-Landau and Swift-Hohenberg equations, Physica A-Statistical Mechanics and its Applications, 391 (2012), 779-791.
doi: 10.1016/j.physa.2011.08.054.![]() ![]() |
[18] |
K. Nakao, On time-periodic solutions to the Boussinesq equations in exterior domains, J. Math. Anal. Appl., 482 (2020), 123537, 16 pp.
doi: 10.1016/j.jmaa.2019.123537.![]() ![]() ![]() |
[19] |
T. Okabe and Y. Tsutsui, Time periodic strong solutions to the incompressible Navier-Stokes equations with external forces of non-divergence form, J. Differential Equations, 263 (2017), 8229-8263.
doi: 10.1016/j.jde.2017.08.038.![]() ![]() ![]() |
[20] |
A. N. Sandjo, S. Moutari and Y. Gningue, Solutions of fourth-order parabolic equation modeling thin film growth, J. Differential Equations, 259 (2015), 7260-7283.
doi: 10.1016/j.jde.2015.08.022.![]() ![]() ![]() |
[21] |
Z. Tan and Z. Wu, Time periodic strong solutions to the Keller-Segel system coupled to Navier-Stokes equation, J. Differential Equations, 298 (2021), 95-131.
doi: 10.1016/j.jde.2021.06.044.![]() ![]() ![]() |
[22] |
M. Yamazaki, The Navier-Stokes equations in the weak-$L^n$ space with time-dependent external force, Math. Ann., 317 (2000), 635-675.
doi: 10.1007/PL00004418.![]() ![]() ![]() |
[23] |
Y. Yang and Y. Zhou, Time-periodic solution to a two-phase model with magnetic field in a periodic domain, J. Math. Anal. Appl., 489 (2020), 124146, 22 pp.
doi: 10.1016/j.jmaa.2020.124146.![]() ![]() ![]() |