Method | PSNR | SSIM |
Noisy imge | 18.94 | 0.1736 |
ADPDE | 29.95 | 0.8653 |
WCPM | 31.81 | 0.8497 |
AFPDE | 31.59 | 0.9539 |
FOPDE | 31.28 | 0.8473 |
NWPDE | 32.31 | 0.9577 |
MTPDE | 34.14 | 0.9387 |
Our | 35.30 | 0.9647 |
In this paper, we introduce a second-order equation based on a diffusion tensor combined with a bilateral total variation (BTV) term that takes the benefit from the diffusion model of Perona-Malik in the homogeneous regions, the Weickert model near sharp edge and the BTV term in reducing blur. Compared to the other partial differential equations (PDE) used in the SR context, the proposed super-resolution (SR) PDE can efficiently preserve image components such as corners and flat regions with less apparition of blur in homogeneous regions. Moreover, since the SR approaches are always ill-posed, a mathematical study of the existence and uniqueness of the solution is also checked in a Sobolev space. From the numerical experiments we can observe that the proposed PDE can efficiently improve the quality of the high-resolution (HR) image. Surprisingly, the apparition of blur in the restored image is less compared to the other methods. In addition to visual evaluation, two-based metrics are computed to confirm the improvements offered by the proposed PDE.
Citation: |
Table 1.
The PSNR and SSIM table for the first example when
Method | PSNR | SSIM |
Noisy imge | 18.94 | 0.1736 |
ADPDE | 29.95 | 0.8653 |
WCPM | 31.81 | 0.8497 |
AFPDE | 31.59 | 0.9539 |
FOPDE | 31.28 | 0.8473 |
NWPDE | 32.31 | 0.9577 |
MTPDE | 34.14 | 0.9387 |
Our | 35.30 | 0.9647 |
[1] |
L. Afraites, A. Hadri, A. Laghrib and M. Nachaoui, A high order PDE-constrained optimization for the image denoising problem, Inverse Problems in Science and Engineering, 29 (2021), 1821-1863.
doi: 10.1080/17415977.2020.1867547.![]() ![]() ![]() |
[2] |
F. Ait Bella, A. Hadri, A. Hakim and A. Laghrib, A nonlocal Weickert type PDE applied to multi-frame super-resolution, Evolution Equations Control Theory, 10 (2021), 633-655.
doi: 10.3934/eect.2020084.![]() ![]() ![]() |
[3] |
H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization, SIAM, 2014.
doi: 10.1137/1.9781611973488.![]() ![]() ![]() |
[4] |
F. E. Browder, A new generalization of the Schauder fixed point theorem, Mathematische Annalen, 174 (1967), 285-290.
doi: 10.1007/BF01364275.![]() ![]() ![]() |
[5] |
F. Catté, P.-L. Lions, J.-M. Morel and T. Coll, Image selective smoothing and edge detection by nonlinear diffusion, SIAM Journal on Numerical Analysis, 29 (1992), 182-193.
doi: 10.1137/0729012.![]() ![]() ![]() |
[6] |
S. Chaudhuri, Super-Resolution Imaging, vol. 632, Springer Science & Business Media, 2001.
![]() |
[7] |
I. El Mourabit, M. El Rhabi, A. Hakim, A. Laghrib and E. Moreau, A new denoising model for multi-frame super-resolution image reconstruction, Signal Processing, 132 (2017), 51-65.
doi: 10.1016/j.sigpro.2016.09.014.![]() ![]() |
[8] |
S. Farsiu, M. D. Robinson, M. Elad and P. Milanfar, Fast and robust multiframe super resolution, IEEE Transactions on Image Processing, 13 (2004), 1327-1344.
doi: 10.1109/TIP.2004.834669.![]() ![]() |
[9] |
M. Hakim, A. Ghazdali and A. Laghrib, A multi-frame super-resolution based on new variational data fidelity term, Applied Mathematical Modelling, 87 (2020), 446-467.
doi: 10.1016/j.apm.2020.06.013.![]() ![]() ![]() |
[10] |
A. Laghrib, A. Ben-Loghfyry, A. Hadri and A. Hakim, A nonconvex fractional order variational model for multi-frame image super-resolution, Signal Processing: Image Communication, 67 (2018), 1-11.
doi: 10.1016/j.image.2018.05.011.![]() ![]() |
[11] |
A. Laghrib, A. Chakib, A. Hadri and A. Hakim, A nonlinear fourth-order PDE for multi-frame image super-resolution enhancement, Discrete Continuous Dynamical Systems-B, 25 (2020), 415-442.
doi: 10.3934/dcdsb.2019188.![]() ![]() ![]() |
[12] |
A. Laghrib, M. Ezzaki, M. El Rhabi, A. Hakim, P. Monasse and S. Raghay, Simultaneous deconvolution and denoising using a second order variational approach applied to image super resolution, Computer Vision and Image Understanding, 168 (2018), 50-63.
doi: 10.1016/j.cviu.2017.08.007.![]() ![]() |
[13] |
A. Laghrib, A. Ghazdali, A. Hakim and S. Raghay, A multi-frame super-resolution using diffusion registration and a nonlocal variational image restoration, Computers Mathematics with Applications, 72 (2016), 2535-2548.
doi: 10.1016/j.camwa.2016.09.013.![]() ![]() ![]() |
[14] |
A. Laghrib, A. Hadri and A. Hakim, An edge preserving high-order PDE for multiframe image super-resolution, Journal of the Franklin Institute, 356 (2019), 5834-5857.
doi: 10.1016/j.jfranklin.2019.02.032.![]() ![]() ![]() |
[15] |
A. Laghrib, A. Hadri, A. Hakim and S. Raghay, A new multiframe super-resolution based on nonlinear registration and a spatially weighted regularization, Information Sciences, 493 (2019), 34-56.
doi: 10.1016/j.ins.2019.04.029.![]() ![]() ![]() |
[16] |
A. Laghrib, A. Hakim and S. Raghay, A combined total variation and bilateral filter approach for image robust super resolution, EURASIP Journal on Image and Video Processing, 2015 (2015), 1-10.
doi: 10.1186/s13640-015-0075-4.![]() ![]() |
[17] |
A. Laghrib, A. Hakim and S. Raghay, An iterative image super-resolution approach based on Bregman distance, Signal Processing: Image Communication, 58 (2017), 24-34.
doi: 10.1016/j.image.2017.06.006.![]() ![]() |
[18] |
X. Li, Y. Hu, X. Gao, D. Tao and B. Ning, A multi-frame image super-resolution method, Signal Processing, 90 (2010), 405-414.
doi: 10.1016/j.sigpro.2009.05.028.![]() ![]() |
[19] |
J. Lions and E. Magenes, Problèmes aux Limites non Homogènes et Applications III, Dunod, 1968.
![]() |
[20] |
C. Ma, C.-Y. Yang, X. Yang and M.-H. Yang, Learning a no-reference quality metric for single-image super-resolution, Computer Vision and Image Understanding, 158 (2017), 1-16.
![]() |
[21] |
B. J. Maiseli, N. Ally and H. Gao, A noise-suppressing and edge-preserving multiframe super-resolution image reconstruction method, Signal Processing: Image Communication, 34 (2015), 1-13.
![]() |
[22] |
A. Marquina and S. J. Osher, Image super-resolution by TV-regularization and Bregman iteration, Journal of Scientific Computing, 37 (2008), 367-382.
doi: 10.1007/s10915-008-9214-8.![]() ![]() ![]() |
[23] |
A. Nachaoui, A. Hakim and A. Laghrib, Mathematical Control and Numerical Applications, vol. 372, Springer, 2021.
doi: 10.1007/978-3-030-83442-5.![]() ![]() ![]() |
[24] |
P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (1990), 629-639.
doi: 10.1109/34.56205.![]() ![]() |
[25] |
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.![]() ![]() ![]() |
[26] |
C.-B. Schonlieb, Modern PDE Techniques for Image Inpainting, PhD thesis, University of Cambridge, 2009.
![]() |
[27] |
W. Tian, T. Ma, Y. Zheng, X. Wang, Y. Tian, A. Al-Dhelaan and M. Al-Rodhaan, Weighted curvature-preserving PDE image filtering method, Computers Mathematics with Applications, 70 (2015), 1336-1344.
doi: 10.1016/j.camwa.2015.07.022.![]() ![]() ![]() |
[28] |
R. Y. Tsai and T. S. Huang, Multiframe image restoration and registration, In: Advances in Computer Vision and Image Processing, ed. T.S.Huang. Greenwich, CT, JAI Press.
![]() |
[29] |
J. Weickert, Anisotropic Diffusion in Image Processing, vol. 1, Teubner Stuttgart, 1998.
![]() ![]() |
[30] |
D. Yi and S. Lee, Fourth-order partial differential equations for image enhancement, Applied Mathematics and Computation, 175 (2006), 430-440.
doi: 10.1016/j.amc.2005.07.043.![]() ![]() ![]() |
[31] |
Y.-L. You, W. Xu, A. Tannenbaum and M. Kaveh, Behavioral analysis of anisotropic diffusion in image processing, IEEE Transactions on Image Processing, 5 (1996), 1539-1553.
![]() |
[32] |
Q. Yuan, L. Zhang and H. Shen, Multiframe super-resolution employing a spatially weighted total variation model, IEEE Transactions on Circuits and Systems for Video Technology, 22 (2012), 379-392.
doi: 10.1109/TCSVT.2011.2163447.![]() ![]() |
[33] |
W. Zeng, X. Lu and S. Fei, Image super-resolution employing a spatial adaptive prior model, Neurocomputing, 162 (2015), 218-233.
doi: 10.1016/j.neucom.2015.03.049.![]() ![]() |
[34] |
X. Zeng and L. Yang, A robust multiframe super-resolution algorithm based on half-quadratic estimation with modified BTV regularization, Digital Signal Processing, 23 (2013), 98-109.
doi: 10.1016/j.dsp.2012.06.013.![]() ![]() ![]() |
[35] |
K. Zhang, X. Gao, D. Tao and X. Li, Single image super-resolution with non-local means and steering kernel regression, IEEE Transactions on Image Processing, 21 (2012), 4544-4556.
doi: 10.1109/TIP.2012.2208977.![]() ![]() ![]() |
[36] |
X. Zhang and W. Ye, An adaptive fourth-order partial differential equation for image denoising, Computers Mathematics with Applications, 74 (2017), 2529-2545.
doi: 10.1016/j.camwa.2017.07.036.![]() ![]() ![]() |
[37] |
S. Zhao, H. Liang and M. Sarem, A generalized detail-preserving super-resolution method, Signal Processing, 120 (2016), 156-173.
doi: 10.1016/j.sigpro.2015.09.006.![]() ![]() |
Results of different denoising models (Butterfly image)
The denoising result of the restored (Motif) image while the Gaussian noise is considered with
The denoising result of the restored (Motif) image while the Gaussian noise is considered with
Comparisons of different SR methods for the (Fish image)
Comparisons of different SR methods (Face image)
Comparisons of different SR methods (Women image)
Comparisons of different SR methods (Rock image)
Comparisons of different SR methods (Butterfly image)
The PSNR values with respect to the iteration number for each simulated test
Comparisons of different SR methods (wheel sequence)
Comparisons of different SR methods (Whitthard image)
Comparisons of different SR methods (Calendar sequence)