\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Final state observability in Banach spaces with applications to subordination and semigroups induced by Lévy processes

  • *Corresponding author: Christian Seifert

    *Corresponding author: Christian Seifert
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • This paper generalizes the abstract method of proving an observability estimate by combining an uncertainty principle and a dissipation estimate. In these estimates we allow for a large class of growth/decay rates satisfying an integrability condition. In contrast to previous results, we use an iterative argument which enables us to give an asymptotically sharp estimate for the observation constant and which is explicit in the model parameters. We give two types of applications where the extension of the growth/decay rates naturally appear. By exploiting subordination techniques we show how the dissipation estimate of a semigroup transfers to subordinated semigroups. Furthermore, we apply our results to semigroups related to Lévy processes.

    Mathematics Subject Classification: Primary: 47D06, 35Q93; Secondary: 47N70, 93D20, 93B05, 93B07.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] K. Beauchard and K. Pravda-Starov, Null-controllability of hypoelliptic quadratic differential equations, J. Éc. polytech. Math., 5 (2018), 1-43.  doi: 10.5802/jep.62.
    [2] S. Bochner, Diffusion equation and stochastic processes, Proc. Natl. Acad. Sci. USA, 35 (1949), 368-370.  doi: 10.1073/pnas.35.7.368.
    [3] C. Bombach, D. Gallaun, C. Seifert and M. Tautenhahn, Observability and null-controllability for parabolic equations in $L_p$-spaces, to appear in Math. Control Relat. Fields, arXiv: 2005.14503, 2022.
    [4] O. Carja, On constraint controllability of linear systems in Banach spaces, J. Optim. Theory Appl., 56 (1988), 215-225.  doi: 10.1007/BF00939408.
    [5] A. Defant and K. Floret, Tensor Norms and Operator Ideals, volume 176 of North-Holland Mathematics Studies, North-Holland, Amsterdam, 1st edition, 1993.
    [6] S. Dolecki and D. L. Russell, A general theory of observation and control, SIAM J. Control Optim., 15 (1977), 185-220.  doi: 10.1137/0315015.
    [7] R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc., 2 (1966), 413-415.  doi: 10.1090/S0002-9939-1966-0203464-1.
    [8] T. Duyckaerts and L. Miller, Resolvent conditions for the control of parabolic equations, Journal of Functional Analysis, 263 (2012), 3641-3673.  doi: 10.1016/j.jfa.2012.09.003.
    [9] M. Egidi and I. Veselić, Sharp geometric condition for null-controllability of the heat equation on $\mathbb{R}^d$ and consistent estimates on the control cost, Arch. Math. (Basel), 111 (2018), 85-99.  doi: 10.1007/s00013-018-1185-x.
    [10] D. GallaunC. Seifert and M. Tautenhahn, Sufficient criteria and sharp geometric conditions for observability in Banach spaces, SIAM J. Control Optim., 58 (2020), 2639-2657.  doi: 10.1137/19M1266769.
    [11] L. Grafakos, Classical Fourier Analysis, volume 249 of Graduate Texts in Mathematics, , Springer, New York, 2nd edition, 2008.
    [12] N. Jacob, Pseudo Differential Operators and Markov Processes, volume I. World Scientific, 2001. doi: 10.1142/9781860949746.
    [13] D. Jerison and G. Lebeau, Nodal sets of sums of eigenfunctions, In M. Christ, C. E. Kenig, and C. Sadosky, editors, Harmonic Analysis and Partial Differential Equations, Chicago Lectures in Mathematics, pages 223-239. University of Chicago Press, Chicago, IL, 1999.
    [14] A. Koenig, Lack of null-controllability for the fractional heat equation and related equations, SIAM J. Control Optim., 58 (2020), 3130-3160.  doi: 10.1137/19M1256610.
    [15] O. Kovrijkine, Some results related to the Logvinenko-Sereda theorem, Proc. Amer. Math. Soc., 129 (2001), 3037-3047.  doi: 10.1090/S0002-9939-01-05926-3.
    [16] K. KruseJ. Meichsner and C. Seifert, Subordination for sequentially equicontinuous equibounded $ C_0 $-semigroups, J. Evol. Equ., 21 (2021), 2665-2690.  doi: 10.1007/s00028-021-00700-7.
    [17] G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations, 20 (1995), 335-356.  doi: 10.1080/03605309508821097.
    [18] G. Lebeau and E. Zuazua, Null-controllability of a system of linear thermoelasticity, Arch. Ration. Mech. Anal., 141 (1998), 297-329.  doi: 10.1007/s002050050078.
    [19] V. N. Logvinenko and Ju. F. Sereda, Equivalent norms in spaces of entire functions of exponential type, Teor. Funkts., Funkts. anal. Prilozh., 20 (1974), 102-111. 
    [20] L. Miller, Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time, J. Differential Equations, 204 (2004), 202-226.  doi: 10.1016/j.jde.2004.05.007.
    [21] L. Miller, A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1465-1485.  doi: 10.3934/dcdsb.2010.14.1465.
    [22] I. Nakić, M. Täufer, M. Tautenhahn and I. Veselić, Sharp estimates and homogenization of the control cost of the heat equation on large domains, ESAIM Control Optim. Calc. Var., 26 (2020), Paper No. 54, 26 pp. doi: 10.1051/cocv/2019058.
    [23] R. S. Phillips, On the generation of semigroups of linear operators, Pacific J. Math., 2 (1952), 343-369.  doi: 10.2140/pjm.1952.2.343.
    [24] R. L. Schilling, R. Song and Z. Vondracek, Bernstein Functions: Theory and Applications, volume 37 of de Gruyter Stud. Math., de Gruyter, Berlin, 2nd edition, 2012.
    [25] G. Tenenbaum and M. Tucsnak, On the null-controllability of diffusion equations, ESAIM Control Optim. Calc. Var., 17 (2011), 1088-1100.  doi: 10.1051/cocv/2010035.
    [26] A. Vieru, On null controllability of linear systems in Banach spaces, Systems Control Lett., 54 (2005), 331-337.  doi: 10.1016/j.sysconle.2004.09.004.
    [27] G. WangM. WangC. Zhang and Y. Zhang, Observable set, observability, interpolation inequality and spectral inequality for the heat equation in $\mathbb{R}^n$, J. Math. Pures Appl., 126 (2019), 144-194.  doi: 10.1016/j.matpur.2019.04.009.
  • 加载中
SHARE

Article Metrics

HTML views(2095) PDF downloads(150) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return