\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Boundedness in a flux-limited chemotaxis-haptotaxis model with nonlinear diffusion

  • * Corresponding author: Pan Zheng

    * Corresponding author: Pan Zheng 
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • This paper deals with a flux-limited chemotaxis-haptotaxis system with nonlinear diffusion

    $ \begin{eqnarray*} \left\{ \begin{split}{} &u_t = \nabla\cdot(D(u)\nabla u)-\chi\nabla\cdot(u|\nabla v|^{p-2}\nabla v)-\xi\nabla\cdot(u\nabla w)+\mu u(1-u-w), \\ &v_t = \Delta v-v+u, \\ &w_t = -vw, \ \end{split} \right. \end{eqnarray*} $

    in $ \Omega\times(0, \infty) $, where $ \Omega\subseteq \mathbb{R}^{n}(n\geq2) $ is a smoothly bounded domain, $ \chi $, $ \xi $ and $ \mu $ are positive parameters, $ D(u)\geq (u+1)^{-\alpha} $ with $ \frac{2-n}{2n}<\alpha<\frac{1}{n} $. It is shown that for sufficiently smooth nonnegative initial data $ (u_{0}, v_{0}, w_{0}) $ and $ 1<p<\frac{n}{n-1}(1-\alpha) $, the corresponding initial-boundary problem possesses a unique nonnegative global classical solution, which is uniformly bounded in time.

    Mathematics Subject Classification: Primary: 92C17, 35K55, 35B35; Secondary: 35B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] N. D. Alikakos, $L^{p}$ bounds of solutions of reaction-diffusion equations, Comm. PDE, 4 (1979), 827-868.  doi: 10.1080/03605307908820113.
    [2] L. Boccardo and J. I. Tello, On an elliptic chemotaxis system with flux limitation and subcritical signal production, Appl. Math. Lett., 134 (2022), 108299, 9 pp. doi: 10.1016/j.aml.2022.108299.
    [3] T. Cieślak, Quasilinear nonuniformly parabolic system modelling chemotaxis, J. Math. Anal. Appl., 326 (2007), 1410-1426.  doi: 10.1016/j.jmaa.2006.03.080.
    [4] R. Dal PassoH. Garcke and G. Grün, On a fourth-order degenerate parabolic equation: Global entropy estimates, existence, and qualitative behavior of solutions, SIAM J. Math. Anal., 29 (1998), 321-342.  doi: 10.1137/S0036141096306170.
    [5] J. GiesselmannN. Kolbe and N. Sfakianakis, Existence and uniqueness of global classical solutions to a two dimensional two species cancer invasion haptotaxis model, Discrete Contin. Dyn. Syst., 23 (2018), 4397-4431.  doi: 10.3934/dcdsb.2018169.
    [6] X. HuL. WangC. Mu and L. Li, Boundedness in a three-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, Comptes Rendus Math., 355 (2017), 181-186.  doi: 10.1016/j.crma.2016.12.005.
    [7] Z. Jia and Z. Yang, Global boundedness to a chemotaxis-haptotaxis model with nonlinear diffusion, Appl. Math. Lett., 103 (2020), 106192, 6 pp. doi: 10.1016/j.aml.2019.106192.
    [8] J. Liu and Y. Wang, A quasilinear chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source, Math. Meth. Appl. Sci., 40 (2017), 2107-2121.  doi: 10.1002/mma.4126.
    [9] J. LiuJ. Zheng and Y. Wang, Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source, Z. Angew. Math. Phys., 67 (2016), 1-33.  doi: 10.1007/s00033-016-0620-8.
    [10] M. Marras, S. Vernier-Piro and T. Yokota, Blow-up phenomena for a chemotaxis system with flux limitation, J. Math. Anal. Appl., 515 (2022), 126376, 13 pp. doi: 10.1016/j.jmaa.2022.126376.
    [11] M. Negreanu and J. I. Tello, On a parabolic-elliptic system with gradient dependent chemotactic coefficient, J. Differ. Equ., 265 (2018), 733-751.  doi: 10.1016/j.jde.2018.01.040.
    [12] Y. Tao, Global existence of classical solutions to a combined chemotaxis-haptotaxis model with logistic source, J. Math. Anal. Appl., 354 (2009), 60-69.  doi: 10.1016/j.jmaa.2008.12.039.
    [13] Y. Tao, Boundedness in a two-dimensional chemotaxis-haptotaxis system, (2014), arXiv: 1407.7382.
    [14] Y. Tao and M. Wang, A combined chemotaxis-haptotaxis system: The role of logistic source, SIAM J. Math. Anal., 41 (2009), 1533-1558.  doi: 10.1137/090751542.
    [15] Y. Tao and M. Wang, Global solution for a chemotactic-haptotactic model of cancer invasion, Nonlinearity, 21 (2008), 2221-2238.  doi: 10.1088/0951-7715/21/10/002.
    [16] Y. Tao and M. Winkler, Dominance of chemotaxis in a chemotaxis-haptotaxis model, Nonlinearity, 27 (2014), 1225-1239.  doi: 10.1088/0951-7715/27/6/1225.
    [17] Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equ., 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.
    [18] Y. Tao and M. Winkler, Asymptotic stability of spatial homogeneity in a haptotaxis model for oncolytic virotherapy, Proc. Roy. Soc. Edinb. A, 152 (2022), 81-101.  doi: 10.1017/prm.2020.97.
    [19] Y. Tao and M. Winkler, Boundedness and stabilization in a multi-dimensional chemotaxis-haptotaxis model, Proc. Roy. Soc. Edinb. A, 144 (2014), 1067-1084.  doi: 10.1017/S0308210512000571.
    [20] J. I. Tello, Blow up of solutions for a parabolic-elliptic chemotaxis system with gradient dependent chemotactic coefficient, Comm. PDE, 47 (2022), 307-345.  doi: 10.1080/03605302.2021.1975132.
    [21] J. I. Tello, Radially symmetric solutions for a Keller-Segel system with flux limitation and nonlinear diffusion, Discrete Contin. Dyn. Syst. Ser. S, 15 (2022), 3003-3023.  doi: 10.3934/dcdss.2022045.
    [22] C. Walker and G. F. Webb, Global existence of classical solutions for a haptotaxis model, SIAM J. Math. Anal., 38 (2007), 1694-1713.  doi: 10.1137/060655122.
    [23] H. Wang and Y. Li, On a parabolic-parabolic system with gradient dependent chemotactic coefficient and consumption, J. Math. Phys., 60 (2019), 011502, 20 pp. doi: 10.1063/1.5040958.
    [24] H. Wang, P. Zheng and J. Xing, Boundedness in a chemotaxis-haptotaxis model with gradient-dependent flux limitation, Appl. Math. Lett., 122 (2021), 107505, 9 pp. doi: 10.1016/j.aml.2021.107505.
    [25] H. Wang and P. Zheng, Qualitative behavior of solutions for a chemotaxis-haptotaxis system with gradient-dependent flux-limitation, Appl. Anal., (2022). doi: 10.1080/00036811.2022.2158820.
    [26] Y. Wang, Boundedness in the higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, J. Differ. Equ., 260 (2016), 1975-1989.  doi: 10.1016/j.jde.2015.09.051.
    [27] Y. Wang, Boundedness in a multi-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, Appl. Math. Lett., 59 (2016), 122-126.  doi: 10.1016/j.aml.2016.03.019.
    [28] M. Winkler, Aggregation versus global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ., 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.
    [29] M. Winkler and K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal., 72 (2010), 1044-1064.  doi: 10.1016/j.na.2009.07.045.
    [30] J. Yan and Y. Li, Existence and boundedness of solutions for a Keller-Segel system with gradient dependent chemotactic sensitivity, Electron. J. Differ. Equ., (2020), 14 pp.
    [31] P. ZhengC. Mu and X. Song, On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion, Discrete Contin. Dyn. Syst., 36 (2015), 1737-1757.  doi: 10.3934/dcds.2016.36.1737.
  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views(1901) PDF downloads(369) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return