This paper examines the existence of solutions to the continuous Redner-Ben-Avraham-Kahng coagulation system under specific growth conditions on unbounded coagulation kernels at infinity. Moreover, questions related to uniqueness and continuous dependence on the data are also addressed under additional restrictions. Finally, the large-time behaviour of solutions is also investigated.
Citation: |
[1] |
J. M. Ball and J. Carr, The discrete coagulation-fragmentation equations: Existence, uniqueness and density conservation, J. Statist. Phys., 61 (1990), 203-234.
doi: 10.1007/BF01013961.![]() ![]() ![]() |
[2] |
P. K. Barik and A. K. Giri, Global classical solutions to the continuous coagulation equation with collisional breakage, Z. Angew. Math. Phys., 71 (2020), Paper No. 38, 23 pp.
doi: 10.1007/s00033-020-1261-5.![]() ![]() ![]() |
[3] |
P. K. Barik, A. K. Giri and Ph. Laurençot, Mass-conserving solutions to the Smoluchowski coagulation equation with singular kernel, Proc. Roy. Soc. Edinburgh Sect. A, 150 (2020), 1805-1825.
doi: 10.1017/prm.2018.158.![]() ![]() ![]() |
[4] |
F. P. da Costa, J. T. Pinto and R. Sasportes, The Redner–Ben-Avraham–Kahng cluster system, São Paulo J. Math. Sci., 6 (2012), 171-201.
doi: 10.11606/issn.2316-9028.v6i2p171-201.![]() ![]() ![]() |
[5] |
F. P. da Costa, J. T. Pinto and R. Sasportes, The Redner–Ben-Avraham–Kahng coagulation system with constant coefficients: The finite dimensional case, Z. Angew. Math. Phys., 66 (2015), 1375-1385.
doi: 10.1007/s00033-014-0485-7.![]() ![]() ![]() |
[6] |
A. K. Giri, Ph. Laurençot and G. Warnecke, Weak solutions to the continuous coagulation with multiple fragmentation, Nonlinear Anal., 75 (2012), 2199-2208.
doi: 10.1016/j.na.2011.10.021.![]() ![]() ![]() |
[7] |
I. Ispolatov, P. L. Krapivsky and S. Redner, War: The dynamics of vicious civilizations, Phys. Rev. E, 54 (1996), 1274-1289.
doi: 10.1103/PhysRevE.54.1274.![]() ![]() |
[8] |
M. Lachowicz, Ph. Laurençot and D. Wrzosek, On the Oort-Hulst-Safronov coagulation equation and its relation to the Smoluchoski equation, SIAM J. Math. Anal., 34 (2003), 1399-1421.
doi: 10.1137/S0036141002414470.![]() ![]() ![]() |
[9] |
Ph. Laurençot, On a class of continuous coagulation-fragmentation equations, J. Differ. Equ., 167 (2000), 245-274.
doi: 10.1006/jdeq.2000.3809.![]() ![]() ![]() |
[10] |
Ph. Laurençot, Weak compactness techniques and coagulation equations, Evolutionary Equations with Applications in Natural Sciences, Lecture Notes in Math., Springer, Cham, 2126 (2015), 199-253.
doi: 10.1007/978-3-319-11322-7_5.![]() ![]() ![]() |
[11] |
Ph. Laurençot and S. Mischler, On coalescence equations and related models, Modeling and Computational Methods for Kinetic Equations, Model. Simul. Sci. Eng. Technol., (2004), 321-356.
![]() ![]() |
[12] |
H. Müller, Zur allgemeinen Theorie der raschen Koagulation, Kolloidchemische Beihefte, 27 (1928), 223-250.
![]() |
[13] |
S. Redner, D. Ben-Avraham and B. Kahng, Kinetics of 'cluster eating', J. Phys. A Math. Gen., 20 (1981), 1231-1238.
doi: 10.1088/0305-4470/20/5/031.![]() ![]() |
[14] |
M. Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösung, Zeitschrift für Physik. Chemie, 92 (1917), 129-168.
![]() |
[15] |
I. W. Stewart, A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels, Math. Methods Appl. Sci., 11 (1989), 627-648.
doi: 10.1002/mma.1670110505.![]() ![]() ![]() |
[16] |
I. W. Stewart, A uniqueness theorem for the coagulation-fragmentation equation, Math. Proc. Camb. Phil. Soc., 107 (1990), 573-578.
doi: 10.1017/S0305004100068821.![]() ![]() ![]() |
Regions