\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Sufficient maximum principle for partially observed mean-field stochastic optimal control problems with delays

  • *Corresponding author: Yu Shi

    *Corresponding author: Yu Shi 

The first author is supported by [the National Natural Science Foundation of China (Grant No. 11801154)].
The second author is supported by [the National Natural Science Foundation of China (Grant No. 12371480) and Fundamental Research Funds for the Central Universities project of China (Grant No. 104972024KFYjc0069)].
The third author is supported by [the Natural Science Foundation of Hubei Province (Grant No. 2023AFC006)]

Abstract / Introduction Full Text(HTML) Figure(5) Related Papers Cited by
  • This paper deals with partially observed optimal control of mean-field system with noisy memory and discrete delay. By means of the maximum principle, a sufficient optimality condition is established with an assumption of concavity. The main features of this paper include the introduction of a unified adjoint equation. Three examples that shed light on the theoretical results are established in this paper. In particular, a pension fund problem is solved, and an explicit expression for the optimal consumption rate is obtained by means of the maximum principle. Finally, analytic optimal controls are given in the paper and the numerical simulation shows the effect of delay on the optimal solution.

    Mathematics Subject Classification: Primary: 93E03, 93E20; Secondary: 93C41, 49N05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Curve of $ P_1(t) $

    Figure 2.  Curve of $ \Gamma(t) $

    Figure 3.  Curve of $ u(t) $

    Figure 4.  Curve of $ \Delta(t) $

    Figure 5.  The solution $ P_1(t) $ with different time delays $ \delta $

  • [1] N. E. H. AbadaM. Hafayed and S. Meherrem, On partially observed optimal singular control of McKean-Vlasov stochastic systems: Maximum principle approach, Math. Method Appl. Sci., 45 (2022), 10363-10383.  doi: 10.1002/mma.8373.
    [2] N. AgramS. HaademB. Øksendal and F. Proske, A maximum principle for infinite horizon delay equations, SIAM J. Math. Anal., 45 (2013), 2499-2522.  doi: 10.1137/120882809.
    [3] N. Agram and B. Øksendal, Infinite horizon optimal control of forward-backward stochastic differential equations with delay, J. Comput. Appl. Math., 259 (2014), 336-349.  doi: 10.1016/j.cam.2013.04.048.
    [4] N. Agram and E. E. Røse, Optimal control of forward-backward mean-field stochastic delayed systems, Afr. Mat., 29 (2018), 149-174.  doi: 10.1007/s13370-017-0532-6.
    [5] D. Andersson and B. Djehiche, A maximum prnciple for SDEs of mean-field type, Appl. Math. Optim., 63 (2011), 341-356.  doi: 10.1007/s00245-010-9123-8.
    [6] J. S. BarasR. J. Elliot and M. Kohlmann, The partially observed stochastic minimum principle, SIAM J. Control Optim., 27 (1989), 1279-1292.  doi: 10.1137/0327065.
    [7] A. Bensoussan, Maximum principle and dynamic programming approaches of the optimal control of partially observed diffusion, Stochastics: An International Journal of Probability and Stochastic Processes, 9 (1983), 169-222.  doi: 10.1080/17442508308833253.
    [8] R. Buckdahn, B. Djehiche and J. Li, A general stochastic maximum principle for SDEs of mean-field type, Appl. Math. Optim., 64 (2011), 197-216.,
    [9] L. Chen and J. Huang, Stochastic maximum principle for controlled backward delayed system via advanced stochastic differential equqtion, J. Optim. Theory Appl., 167 (2015), 1112-1135.  doi: 10.1007/s10957-013-0386-5.
    [10] L. Chen and Z. Wu, Maximum principle for the stochastic optimal control problem with delay and application, Automatica, 46 (2010), 1074-1080.  doi: 10.1016/j.automatica.2010.03.005.
    [11] L. Chen and Z. Yu, Maximum principle for nonzero-sum stochastic differential game with delays, IEEE Trans. Automat. Control, 60 (2015), 1422-1426.  doi: 10.1109/TAC.2014.2352731.
    [12] K. Dahl, Forward-backward stochastic differential equation games with delay and noisy memory, Stoch. Anal. Appl., 38 (2020), 708-729.  doi: 10.1080/07362994.2020.1713810.
    [13] K. DahlS.-E. A. MohammedB. Øksendal and E. E. Røse, Optimal control of systems with noisy memory and BSDEs with Malliavin derivatives, J. Funct. Anal., 271 (2016), 289-329.  doi: 10.1016/j.jfa.2016.04.031.
    [14] R. DeepaP. Muthukumar and M. Hafayed, Optimal control of nonzero sum game mean-field delayed Markov regime-switching forward-backward system with Lévy processes, Optimal Control Appl. Methods, 42 (2021), 110-125.  doi: 10.1002/oca.2665.
    [15] A. DelavarkhalafiA. S. Fatemion Aghda and M. Tahmasebi, Maximum principle for infinite horizon optimal control of mean-field backward stochastic systems with delay and noisy memory, Int. J. Control, 95 (2022), 535-543.  doi: 10.1080/00207179.2020.1800822.
    [16] H. DuJ. Huang and Y. Qin, A stochastic maximum principle for delayed mean-field stochastic differential equations and its applications, IEEE Trans, Automat. Control, 58 (2013), 3212-3217.  doi: 10.1109/TAC.2013.2264550.
    [17] W. H. Fleming, Optimal continuous-parameter stochastic control, SIAM Rev., 11 (1969), 470-509.  doi: 10.1137/1011086.
    [18] M. Kac, Foundations of kinetic theory, Proceedings of the 3rd Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, United States, 1956,171-197.,
    [19] Y. Kazmerchuk, A. Swishchuk and J. Wu, A continuous-time GARCH model for stochastic volatility with delay, Can. Appl. Math. Q., 13 (2005), 123-149.,
    [20] J.-M. Lasry and P.-L. Lions, Mean field games, Jpn. J. Math., 2 (2007), 229-260.  doi: 10.1007/s11537-007-0657-8.
    [21] J. Li, Stochastic maximum principle in the mean-field controls, Automatica, 48 (2012), 366-373.  doi: 10.1016/j.automatica.2011.11.006.
    [22] N. LiG. Wang and Z. Wu, Linear-quadratic optimal control for time-delay stochastic system with recursive utility under full and partial information, Automatica, 121 (2020), 109169.  doi: 10.1016/j.automatica.2020.109169.
    [23] R. Li and B. Liu, A maximum principle for fully coupled stochastic control systems of mean-field type, J. Math. Anal. Appl., 415 (2014), 902-930.  doi: 10.1016/j.jmaa.2014.02.008.
    [24] H. Ma, Infinite horizon optimal control of mean-field forward-backward delayed systems with Poisson jumps, Eur. J. Control, 46 (2019), 14-22.  doi: 10.1016/j.ejcon.2018.04.003.
    [25] H. Ma and B. Liu, Optimal control of mean-field jump-diffusion systems with noisy memory, Int. J. Control, 92 (2019), 816-827.  doi: 10.1080/00207179.2017.1370556.
    [26] H. P. Mckean, A class of Markov processes associated with nonlinear parabolic equations, Proceedings of the Natinal Academy of Sciences of the United States of America, 56 (1966), 1907-1911.  doi: 10.1073/pnas.56.6.1907.
    [27] Q. Meng and Y. Shen, Optimal control of mean-field jump-diffusion system with delay: A stochastic maximum principle approach, J. Comput. Appl. Math., 279 (2015), 13-30.  doi: 10.1016/j.cam.2014.10.011.
    [28] W. Meng and J. Shi, A global maximum principle for stochastic optimal control problmes with delay and applications, Syst. Control Lett., 150 (2021), 104909.  doi: 10.1016/j.sysconle.2021.104909.
    [29] T. Meyer-BrandisB. Øsendal and X. Zhou, A mean-field stochastic maximum principle via Malliavin calculus, Stochastics, 84 (2012), 643-666.  doi: 10.1080/17442508.2011.651619.
    [30] S.-E. A. Mohammed, Stochastic differential systems with memory: Theory, examples and applications, Decreusefond L., Stochastic Analysis and Related Topics VI. Progress in Probability, Birhäuser, Boston, United States, 1996.,
    [31] B. Øksendal and A. Sulem, A maximum principle for optimal control of stochastic sstems with delay, with applications to finance, Optimal Control and Partial Differential Equations, Amsterdam, Netherlands, 2000, 64-79.,
    [32] B. Øksendal and A. Sulem, Maximum principles for optimal control of forward-backward stochastic differential equations with jumps, SIAM J. Control Optim., 48 (2009), 2945-2976.  doi: 10.1137/080739781.
    [33] S. Peng, A general stochastic maximum principle for optimal control problems, SIAM J. Control Optim., 28 (1990), 966-979.  doi: 10.1137/0328054.
    [34] S. Peng and Z. Yang, Anticipated backward stochastic differential equations, Ann. Probab., 37 (2009), 877-902.  doi: 10.1214/08-AOP423.
    [35] E. Savku and G.-W. Weber, A stochastic maxmum principle for a Markov regime-switching jump-diffusion model with delay and an application to Finance, J. Optim. Theory Appl., 179 (2018), 696-721.  doi: 10.1007/s10957-017-1159-3.
    [36] Y. ShenQ. Meng and P. Shi, Maximum principle for mean-field jump-diffusion stochastic delay differential equations and its application to finance, Automatica, 50 (2014), 1565-1579.  doi: 10.1016/j.automatica.2014.03.021.
    [37] G. Wang and Z. Wu, The maximum principles for stochastic recursive optimal control problems under partial information, IEEE Transactions on Automatic Control, 54 (2009), 1230-1242.  doi: 10.1109/TAC.2009.2019794.
    [38] G. Wang and Z. Wu, A maximum principle for mean-field stochastic control system with noisy observation, Automatica, 137 (2022), 110135.  doi: 10.1016/j.automatica.2021.110135.
    [39] G. WangZ. Wu and J. Xiong, A linear-quadratic optimal control problem of forward-backward stochastic differential equations with partial information, IEEE T. Automat. Contr., 60 (2015), 2904-2916.  doi: 10.1109/TAC.2015.2411871.
    [40] G. Wang and Z. Yu, A partial information non-zero sum differential game of backward stochastic differential equations with applications, Automatica, 48 (2012), 342-352.  doi: 10.1016/j.automatica.2011.11.010.
    [41] G. WangC. Zhang and W. Zhang, Stochastic maximum principle for mean-field type optimal control with partial information, IEEE T. Automat. Contr., 59 (2014), 522-528.  doi: 10.1109/TAC.2013.2273265.
    [42] J. Wu and H. Qian, Optimal control for a zero-sum stochastic differential game with noisy memory under g-expectation, Proceedings of the 37th China Control Conference, Wuhan, China, 2018. doi: 10.23919/ChiCC.2018.8483763.
    [43] J. XuJ. Shi and H. Zhang, A leader-follower stochastic linear quadratic differential game with time delay, Sci. China Inf. Sci., 61 (2018), 112202.  doi: 10.1007/s11432-017-9293-4.
    [44] F. Zhang, Stochastic maximum principle for optimal control problems involving delayed systems, Sci. China Inform. Sci., 64 (2021), 119206.  doi: 10.1007/s11432-019-2826-3.
    [45] F. Zhang, Stochastic maximum principle of mean-field jump-diffusion systems with mixed delays, Syst. Control Lett., 149 (2021), 104874.  doi: 10.1016/j.sysconle.2021.104874.
    [46] F. Zhang, Sufficient maximum principle for stochastic optimal control problems with general delays, J. Optimiz. Theory App., 192 (2022), 678-701.  doi: 10.1007/s10957-021-01987-9.
    [47] Q. Zhang, Maximum principle for non-zero sum stochastic differential game with discrete and distributed delays, J. Syst. Sci. Complex, 34 (2021), 572-587.  doi: 10.1007/s11424-020-9068-1.
    [48] S. ZhangX. Li and J. Xiong, A stochastic maximum principle for partially observed stochastic control systems with delay, Syst. Control Lett., 146 (2020), 104812.  doi: 10.1016/j.sysconle.2020.104812.
    [49] S. Zhang and J. Xiong, A numerical method for forward-backward stochastic equations with delay and anticipated term, Statist. Probab. Lett., 149 (2019), 107-115.  doi: 10.1016/j.spl.2019.01.032.
    [50] Y. Zheng and J. Shi, Stackelberg stocastic differential game with asymmetric noisy observations, Int. J. Control, 95 (2022), 2510-2530.  doi: 10.1080/00207179.2021.1916078.
    [51] Q. Zhou and Y. Ren, A mean-field stochastic maximum principle for optimal control of forward-backward stochastic differential equations with jumps via Malliavin calculus, J. Appl. Math. Phys., 6 (2018), 138-154.  doi: 10.4236/jamp.2018.61014.
  • 加载中

Figures(5)

SHARE

Article Metrics

HTML views(1154) PDF downloads(227) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return