\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asymptotic Behavior of a transmission Heat/Piezoelectric smart material with internal fractional dissipation law

  • *Corresponding author: Ibtissam Issa

    *Corresponding author: Ibtissam Issa 
Abstract / Introduction Full Text(HTML) Figure(0) / Table(1) Related Papers Cited by
  • In this paper, we analyze the stability of a system involving a heat-conducting copper rod and a magnetizable piezoelectric beam, where fractional damping influences the longitudinal displacement of the beam's centerline. The coupled dynamics are governed by partial differential equations that incorporate heat diffusion in the copper rod and piezoelectric effects in the beam, including both mechanical and electrical interactions. Previous research has extensively studied piezoelectric systems and heat transfer dynamics separately, but the combined effect with fractional damping presents a novel challenge. Our investigation employs semi-group theory and multiplier methods to establish a polynomial stability result that is dependent on the order of the fractional derivative, offering insights into the interplay between heat transfer and piezoelectric behavior under fractional damping, which is critical for developing robust and efficient energy harvesting devices and structural control mechanisms.

    Mathematics Subject Classification: Primary: 74D05, 47D03, 74M05; Secondary: 93D23.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Table

    Parameter Corresponding Significance
    $ \chi $ The elastic stiffness coefficient
    $ \kappa $ The thermal diffusivity constant
    $ \gamma $ Piezoelectric coefficient
    $ \beta $ The beam coefficient of impermeability
    $ \rho $ Mass density per unit volume,
    $ \mu $ Magnetic permeability of beam
     | Show Table
    DownLoad: CSV
  • [1] S. AdhikariM. I. Friswell and D. J. Inman, Piezoelectric energy harvesting from broadband random vibrations, Smart Materials and Structures, 18 (2009), 115005.  doi: 10.1088/0964-1726/18/11/115005.
    [2] M. AfilalA. Soufyane and M. d. L. Santos, Piezoelectric beams with magnetic effect and localized damping, Mathematical Control and Related Fields, 13 (2023), 250-264.  doi: 10.3934/mcrf.2021056.
    [3] M. Akil, Stability of piezoelectric beam with magnetic effect under (Coleman or Pipkin)–Gurtin thermal law, Zeitschrift für angewandte Mathematik und Physik, 73 (2022), Paper No. 236, 31 pp. doi: 10.1007/s00033-022-01867-w.
    [4] M. AkilY. ChitourM. Ghader and A. Wehbe, Stability and exact controllability of a timoshenko system with only one fractional damping on the boundary, Asymptotic Analysis, 119 (2020), 221-280.  doi: 10.3233/ASY-191574.
    [5] M. AkilM. Ghader and A. Wehbe, The influence of the coefficients of a system of wave equations coupled by velocities on its stabilization, SeMA Journal, 78 (2020), 287-333.  doi: 10.1007/s40324-020-00233-y.
    [6] M. AkilI. Issa and A. Wehbe, Energy decay of some boundary coupled systems involving wave euler-bernoulli beam with one locally singular fractional kelvin-voigt damping, Mathematical Control and Related Fields, 13 (2023), 330-381.  doi: 10.3934/mcrf.2021059.
    [7] M. Akil, S. Nicaise, A. Özkan Özer and V. Régnier, Stability results for novel serially-connected magnetizable piezoelectric and elastic smart-system designs, Appl. Math. Optim., 89 (2024), Paper No. 64, 50 pp. doi: 10.1007/s00245-024-10129-2.
    [8] M. Akil, A. Soufyane and Y. Belhamadia, Stabilization results of a piezoelectric beams with partial viscous dampings and under lorenz gauge condition, Applied Mathematics and Optimization, 87 (2023), Paper No. 26, 38 pp. doi: 10.1007/s00245-022-09935-3.
    [9] M. Akil and A. Wehbe, Stabilization of multidimensional wave equation with locally boundary fractional dissipation law under geometric conditions, Mathematical Control and Related Fields, 9 (2019), 97-116.  doi: 10.3934/mcrf.2019005.
    [10] Y. AnW. Liu and A. Kong, Stability of piezoelectric beams with magnetic effects of fractional derivative type and with/without thermal effects, Acta Math. Sci. Ser. A (Chinese Ed.), 43 (2023), 355-376. 
    [11] A. d. Araújo RamosC. Gonçalves and S. Neto, Exponential stability and numerical treatment for piezoelectric beams with magnetic effect, ESAIM: Mathematical Modelling and Numerical Analysis, 52 (2018), 255-274.  doi: 10.1051/m2an/2018004.
    [12] W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Transactions of the American Mathematical Society, 306 (1988), 837-852.  doi: 10.1090/S0002-9947-1988-0933321-3.
    [13] R. L. Bagley and P. J. Torvik, Fractional calculus - a different approach to the analysis of viscoelastically damped structures, AIAA Journal, 21 (1983), 741-748.  doi: 10.2514/3.8142.
    [14] R. L. Bagley and P. J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, Journal of Rheology, 27 (1983), 201-210.  doi: 10.1122/1.549724.
    [15] Y. W. H. T. Banks and R. C. Smith., Smart material structures: Modelling, Estimation and Control, 1996.
    [16] C. J. K. Batty and T. Duyckaerts, Non-uniform stability for bounded semi-groups on {B}anach spaces, J. Evol. Equ., 8 (2008), 765-780.  doi: 10.1007/s00028-008-0424-1.
    [17] C. Baur, D. J. Apo, D. Maurya, S. Priya and W. Voit, Advances in piezoelectric polymer composites for vibrational energy harvesting, ACS Symposium Series, 1161 (2014), chapter 1, 1-27. doi: 10.1021/bk-2014-1161.ch001.
    [18] A. Benaissa and S. Gaouar, Asymptotic stability for the lamé system with fractional boundary damping, Computers and Mathematics with Applications, 77 (2019), 1331-1346.  doi: 10.1016/j.camwa.2018.11.011.
    [19] A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455-478.  doi: 10.1007/s00208-009-0439-0.
    [20] M. Caputo, Linear models of dissipation whose q is almost frequency independent—ii, Geophysical Journal International, 13 (1967), 529-539.  doi: 10.1111/j.1365-246X.1967.tb02303.x.
    [21] M. Caputo, Elasticità e Dissipazione, Zanichelli, 1969.
    [22] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73-85. 
    [23] M. Caputo and F. Mainardi, Linear models of dissipation in anelastic solids, La Rivista del Nuovo Cimento, 1 (1971), 161-198.  doi: 10.1007/BF02820620.
    [24] C. CastilleI. Dufour and C. Lucat, Longitudinal vibration mode of piezoelectric thick-film cantilever-based sensors in liquid media, Applied Physics Letters, 96 (2010), 154102.  doi: 10.1063/1.3387753.
    [25] U. J. Choi and R. MacCamy, Fractional order volterra equations with applications to elasticity, Journal of Mathematical Analysis and Applications, 139 (1989), 448-464.  doi: 10.1016/0022-247X(89)90120-0.
    [26] R. Dautray and J. L. Lions, Analyse Mathématique et Calcul Numérique Pour les Sciences et les Techniques, volume 3., 1985.
    [27] P. DestuynderI. LegrainL. Castel and N. Richard, Theoretical, numerical and experimental discussion on the use of piezoelectric devices for control-structure interaction, European Journal of Mechanics A-solids, 11 (1992), 181-213. 
    [28] M. FreitasA. RamosA. Özer and D. Almeida Júnior, Long-time dynamics for a fractional piezoelectric system with magnetic effects and fourier's law, Journal of Differential Equations, 280 (2021), 891-927.  doi: 10.1016/j.jde.2021.01.030.
    [29] B. KapitonovB. Miara and G. Menzala, Boundary observation and exact control of a quasi-electrostatic piezoelectric system in multilayered media, SIAM J. Control and Optimization, 46 (2007), 1080-1097.  doi: 10.1137/050629884.
    [30] A. Kilbas, H. Srivastava and J. Trujillo, \em Theory And Applications of Fractional Differential Equations, North-Holland Mathematics Studies. Elsevier Science & Tech, 2006.
    [31] V. Komornik, Exact Controllability and Stabilization: The Multiplier Method., 1994.
    [32] I. Lasiecka and B. Miara, Exact controllability of a 3d piezoelectric body, Comptes Rendus Mathematique, 347 (2009), 167-172.  doi: 10.1016/j.crma.2008.12.007.
    [33] Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys., 56 (2005), 630-644.  doi: 10.1007/s00033-004-3073-4.
    [34] Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, volume 398 of Chapman & Hall/CRC Research Notes in Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 1999.
    [35] M. Mainardi and E. Bonetti, The application of real-order derivatives in linear viscoelasticity, Progress and Trends in Rheology II, (1988), 64-67. doi: 10.1007/978-3-642-49337-9_11.
    [36] T. MaryatiJ. Muñoz RiveraV. Poblete and O. Vera, Asymptotic behavior in a laminated beams due interfacial slip with a boundary dissipation of fractional derivative type, Applied Mathematics and Optimization, 84 (2019), 85-102.  doi: 10.1007/s00245-019-09639-1.
    [37] D. Matignon, Asymptotic stability of webster-lokshin equation, Mathematical Control and Related Fields, 4 (2014), 481-500.  doi: 10.3934/mcrf.2014.4.481.
    [38] B. Mbodje, Wave energy decay under fractional derivative controls, IMA Journal of Mathematical Control and Information, 23 (2006), 237-257.  doi: 10.1093/imamci/dni056.
    [39] K. Morris and A. Ozer, Modeling and stabilizability of voltage-actuated piezoelectric beams with magnetic effects, SIAM J. Control and Optim., 52 (2014), 2371-2398.  doi: 10.1137/130918319.
    [40] K. Morris and A. O. Ozer, Strong stabilization of piezoelectric beams with magnetic effects, In 52nd IEEE Conference on Decision and Control, (2013), 3014-3019. doi: 10.1109/CDC.2013.6760341.
    [41] V. Nguyen, N. Wu and Q. Wang, A review on energy harvesting from ocean waves by piezoelectric technology, Journal of Modeling in Mechanics and Materials, 1 (2017). doi: 10.1515/jmmm-2016-0161.
    [42] S. J. OhH. HanS. HanJ. Lee and W. Chun, Development of a tree‐shaped wind power system using piezoelectric materials, International Journal of Energy Research, 34 (2010), 431-437.  doi: 10.1002/er.1644.
    [43] A. O. Ozer, R. Emran and A. K. Aydin, Maximal decay rate and optimal sensor feedback amplifiers for fast stabilization of magnetizable piezoelectric beam equations, https://arXiv.org/abs/2306.10705, 2023.
    [44] A. O. Ozer, I. Khalilullah and U. Rasaq, The exponential stabilization of a heat and piezoelectric beam interaction with static or hybrid feedback controllers, https://arXiv.org/abs/2311.05306, 2023.
    [45] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci., 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.
    [46] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional integrals and derivatives: Theory and applications, 1993.
    [47] R. C. Smith, Smart Material Systems: Model Development, Society for Industrial and Applied Mathematics, Jan. 2005. doi: 10.1137/1.9780898717471.
    [48] A. Soufyane, A. Mounir and M. Santos, Energy decay for a weakly nonlinear damped piezoelectric beams with magnetic effects and a nonlinear delay term, Zeitschrift für angewandte Mathematik und Physik, 72 (2021), article number 166. doi: 10.1007/s00033-021-01593-9.
    [49] H. F. Tiersten, Linear Piezoelectric Plate Vibrations, 1969.
    [50] P. Torvik and R. Bagley, On the appearance of the fractional derivative in the behavior of real materials, Journal of Applied Mechanics, 51 (1984), 294-298.  doi: 10.1115/1.3167615.
    [51] C. Williams and R. Yates, Analysis of a micro-electric generator for microsystems, Sensors and Actuators A: Physical, 52 (1996), 8-11.  doi: 10.1016/0924-4247(96)80118-X.
    [52] N. WuQ. Wang and X. Xie, Ocean wave energy harvesting with a piezoelectric coupled buoy structure, Applied Ocean Research, 50 (2015), 110-118.  doi: 10.1016/j.apor.2015.01.004.
    [53] J. Yang, A review of a few topics in piezoelectricity, Applied Mechanics Reviews - APPL MECH REV, 59 (2006), 335-345.  doi: 10.1115/1.2345378.
    [54] J. S. Yang, An Introduction to the Theory of Piezoelectricity, Adv. Mech. Math., 9, Springer, Cham, 2018.
    [55] X. Zhang and E. Zuazua, Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction, Archive for Rational Mechanics and Analysis, 184 (2007), 49-120.  doi: 10.1007/s00205-006-0020-x.
    [56] X. Zhang and E. Zuazua, Polynomial decay and control of a 1-d hyperbolic-parabolic coupled system, Journal of Differential Equations, 204 (2004), 380-438.  doi: 10.1016/j.jde.2004.02.004.
  • 加载中

Tables(1)

SHARE

Article Metrics

HTML views(839) PDF downloads(114) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return