[1]
|
S. Adhikari, M. I. Friswell and D. J. Inman, Piezoelectric energy harvesting from broadband random vibrations, Smart Materials and Structures, 18 (2009), 115005.
doi: 10.1088/0964-1726/18/11/115005.
|
[2]
|
M. Afilal, A. Soufyane and M. d. L. Santos, Piezoelectric beams with magnetic effect and localized damping, Mathematical Control and Related Fields, 13 (2023), 250-264.
doi: 10.3934/mcrf.2021056.
|
[3]
|
M. Akil, Stability of piezoelectric beam with magnetic effect under (Coleman or Pipkin)–Gurtin thermal law, Zeitschrift für angewandte Mathematik und Physik, 73 (2022), Paper No. 236, 31 pp.
doi: 10.1007/s00033-022-01867-w.
|
[4]
|
M. Akil, Y. Chitour, M. Ghader and A. Wehbe, Stability and exact controllability of a timoshenko system with only one fractional damping on the boundary, Asymptotic Analysis, 119 (2020), 221-280.
doi: 10.3233/ASY-191574.
|
[5]
|
M. Akil, M. Ghader and A. Wehbe, The influence of the coefficients of a system of wave equations coupled by velocities on its stabilization, SeMA Journal, 78 (2020), 287-333.
doi: 10.1007/s40324-020-00233-y.
|
[6]
|
M. Akil, I. Issa and A. Wehbe, Energy decay of some boundary coupled systems involving wave euler-bernoulli beam with one locally singular fractional kelvin-voigt damping, Mathematical Control and Related Fields, 13 (2023), 330-381.
doi: 10.3934/mcrf.2021059.
|
[7]
|
M. Akil, S. Nicaise, A. Özkan Özer and V. Régnier, Stability results for novel serially-connected magnetizable piezoelectric and elastic smart-system designs, Appl. Math. Optim., 89 (2024), Paper No. 64, 50 pp.
doi: 10.1007/s00245-024-10129-2.
|
[8]
|
M. Akil, A. Soufyane and Y. Belhamadia, Stabilization results of a piezoelectric beams with partial viscous dampings and under lorenz gauge condition, Applied Mathematics and Optimization, 87 (2023), Paper No. 26, 38 pp.
doi: 10.1007/s00245-022-09935-3.
|
[9]
|
M. Akil and A. Wehbe, Stabilization of multidimensional wave equation with locally boundary fractional dissipation law under geometric conditions, Mathematical Control and Related Fields, 9 (2019), 97-116.
doi: 10.3934/mcrf.2019005.
|
[10]
|
Y. An, W. Liu and A. Kong, Stability of piezoelectric beams with magnetic effects of fractional derivative type and with/without thermal effects, Acta Math. Sci. Ser. A (Chinese Ed.), 43 (2023), 355-376.
|
[11]
|
A. d. Araújo Ramos, C. Gonçalves and S. Neto, Exponential stability and numerical treatment for piezoelectric beams with magnetic effect, ESAIM: Mathematical Modelling and Numerical Analysis, 52 (2018), 255-274.
doi: 10.1051/m2an/2018004.
|
[12]
|
W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Transactions of the American Mathematical Society, 306 (1988), 837-852.
doi: 10.1090/S0002-9947-1988-0933321-3.
|
[13]
|
R. L. Bagley and P. J. Torvik, Fractional calculus - a different approach to the analysis of viscoelastically damped structures, AIAA Journal, 21 (1983), 741-748.
doi: 10.2514/3.8142.
|
[14]
|
R. L. Bagley and P. J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, Journal of Rheology, 27 (1983), 201-210.
doi: 10.1122/1.549724.
|
[15]
|
Y. W. H. T. Banks and R. C. Smith., Smart material structures: Modelling, Estimation and Control, 1996.
|
[16]
|
C. J. K. Batty and T. Duyckaerts, Non-uniform stability for bounded semi-groups on {B}anach spaces, J. Evol. Equ., 8 (2008), 765-780.
doi: 10.1007/s00028-008-0424-1.
|
[17]
|
C. Baur, D. J. Apo, D. Maurya, S. Priya and W. Voit, Advances in piezoelectric polymer composites for vibrational energy harvesting, ACS Symposium Series, 1161 (2014), chapter 1, 1-27.
doi: 10.1021/bk-2014-1161.ch001.
|
[18]
|
A. Benaissa and S. Gaouar, Asymptotic stability for the lamé system with fractional boundary damping, Computers and Mathematics with Applications, 77 (2019), 1331-1346.
doi: 10.1016/j.camwa.2018.11.011.
|
[19]
|
A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455-478.
doi: 10.1007/s00208-009-0439-0.
|
[20]
|
M. Caputo, Linear models of dissipation whose q is almost frequency independent—ii, Geophysical Journal International, 13 (1967), 529-539.
doi: 10.1111/j.1365-246X.1967.tb02303.x.
|
[21]
|
M. Caputo, Elasticità e Dissipazione, Zanichelli, 1969.
|
[22]
|
M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73-85.
|
[23]
|
M. Caputo and F. Mainardi, Linear models of dissipation in anelastic solids, La Rivista del Nuovo Cimento, 1 (1971), 161-198.
doi: 10.1007/BF02820620.
|
[24]
|
C. Castille, I. Dufour and C. Lucat, Longitudinal vibration mode of piezoelectric thick-film cantilever-based sensors in liquid media, Applied Physics Letters, 96 (2010), 154102.
doi: 10.1063/1.3387753.
|
[25]
|
U. J. Choi and R. MacCamy, Fractional order volterra equations with applications to elasticity, Journal of Mathematical Analysis and Applications, 139 (1989), 448-464.
doi: 10.1016/0022-247X(89)90120-0.
|
[26]
|
R. Dautray and J. L. Lions, Analyse Mathématique et Calcul Numérique Pour les Sciences et les Techniques, volume 3., 1985.
|
[27]
|
P. Destuynder, I. Legrain, L. Castel and N. Richard, Theoretical, numerical and experimental discussion on the use of piezoelectric devices for control-structure interaction, European Journal of Mechanics A-solids, 11 (1992), 181-213.
|
[28]
|
M. Freitas, A. Ramos, A. Özer and D. Almeida Júnior, Long-time dynamics for a fractional piezoelectric system with magnetic effects and fourier's law, Journal of Differential Equations, 280 (2021), 891-927.
doi: 10.1016/j.jde.2021.01.030.
|
[29]
|
B. Kapitonov, B. Miara and G. Menzala, Boundary observation and exact control of a quasi-electrostatic piezoelectric system in multilayered media, SIAM J. Control and Optimization, 46 (2007), 1080-1097.
doi: 10.1137/050629884.
|
[30]
|
A. Kilbas, H. Srivastava and J. Trujillo, \em Theory And Applications of Fractional Differential Equations, North-Holland Mathematics Studies. Elsevier Science & Tech, 2006.
|
[31]
|
V. Komornik, Exact Controllability and Stabilization: The Multiplier Method., 1994.
|
[32]
|
I. Lasiecka and B. Miara, Exact controllability of a 3d piezoelectric body, Comptes Rendus Mathematique, 347 (2009), 167-172.
doi: 10.1016/j.crma.2008.12.007.
|
[33]
|
Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys., 56 (2005), 630-644.
doi: 10.1007/s00033-004-3073-4.
|
[34]
|
Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, volume 398 of Chapman & Hall/CRC Research Notes in Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 1999.
|
[35]
|
M. Mainardi and E. Bonetti, The application of real-order derivatives in linear viscoelasticity, Progress and Trends in Rheology II, (1988), 64-67.
doi: 10.1007/978-3-642-49337-9_11.
|
[36]
|
T. Maryati, J. Muñoz Rivera, V. Poblete and O. Vera, Asymptotic behavior in a laminated beams due interfacial slip with a boundary dissipation of fractional derivative type, Applied Mathematics and Optimization, 84 (2019), 85-102.
doi: 10.1007/s00245-019-09639-1.
|
[37]
|
D. Matignon, Asymptotic stability of webster-lokshin equation, Mathematical Control and Related Fields, 4 (2014), 481-500.
doi: 10.3934/mcrf.2014.4.481.
|
[38]
|
B. Mbodje, Wave energy decay under fractional derivative controls, IMA Journal of Mathematical Control and Information, 23 (2006), 237-257.
doi: 10.1093/imamci/dni056.
|
[39]
|
K. Morris and A. Ozer, Modeling and stabilizability of voltage-actuated piezoelectric beams with magnetic effects, SIAM J. Control and Optim., 52 (2014), 2371-2398.
doi: 10.1137/130918319.
|
[40]
|
K. Morris and A. O. Ozer, Strong stabilization of piezoelectric beams with magnetic effects, In 52nd IEEE Conference on Decision and Control, (2013), 3014-3019.
doi: 10.1109/CDC.2013.6760341.
|
[41]
|
V. Nguyen, N. Wu and Q. Wang, A review on energy harvesting from ocean waves by piezoelectric technology, Journal of Modeling in Mechanics and Materials, 1 (2017).
doi: 10.1515/jmmm-2016-0161.
|
[42]
|
S. J. Oh, H. Han, S. Han, J. Lee and W. Chun, Development of a tree‐shaped wind power system using piezoelectric materials, International Journal of Energy Research, 34 (2010), 431-437.
doi: 10.1002/er.1644.
|
[43]
|
A. O. Ozer, R. Emran and A. K. Aydin, Maximal decay rate and optimal sensor feedback amplifiers for fast stabilization of magnetizable piezoelectric beam equations, https://arXiv.org/abs/2306.10705, 2023.
|
[44]
|
A. O. Ozer, I. Khalilullah and U. Rasaq, The exponential stabilization of a heat and piezoelectric beam interaction with static or hybrid feedback controllers, https://arXiv.org/abs/2311.05306, 2023.
|
[45]
|
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci., 44, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1.
|
[46]
|
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional integrals and derivatives: Theory and applications, 1993.
|
[47]
|
R. C. Smith, Smart Material Systems: Model Development, Society for Industrial and Applied Mathematics, Jan. 2005.
doi: 10.1137/1.9780898717471.
|
[48]
|
A. Soufyane, A. Mounir and M. Santos, Energy decay for a weakly nonlinear damped piezoelectric beams with magnetic effects and a nonlinear delay term, Zeitschrift für angewandte Mathematik und Physik, 72 (2021), article number 166.
doi: 10.1007/s00033-021-01593-9.
|
[49]
|
H. F. Tiersten, Linear Piezoelectric Plate Vibrations, 1969.
|
[50]
|
P. Torvik and R. Bagley, On the appearance of the fractional derivative in the behavior of real materials, Journal of Applied Mechanics, 51 (1984), 294-298.
doi: 10.1115/1.3167615.
|
[51]
|
C. Williams and R. Yates, Analysis of a micro-electric generator for microsystems, Sensors and Actuators A: Physical, 52 (1996), 8-11.
doi: 10.1016/0924-4247(96)80118-X.
|
[52]
|
N. Wu, Q. Wang and X. Xie, Ocean wave energy harvesting with a piezoelectric coupled buoy structure, Applied Ocean Research, 50 (2015), 110-118.
doi: 10.1016/j.apor.2015.01.004.
|
[53]
|
J. Yang, A review of a few topics in piezoelectricity, Applied Mechanics Reviews - APPL MECH REV, 59 (2006), 335-345.
doi: 10.1115/1.2345378.
|
[54]
|
J. S. Yang, An Introduction to the Theory of Piezoelectricity, Adv. Mech. Math., 9, Springer, Cham, 2018.
|
[55]
|
X. Zhang and E. Zuazua, Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction, Archive for Rational Mechanics and Analysis, 184 (2007), 49-120.
doi: 10.1007/s00205-006-0020-x.
|
[56]
|
X. Zhang and E. Zuazua, Polynomial decay and control of a 1-d hyperbolic-parabolic coupled system, Journal of Differential Equations, 204 (2004), 380-438.
doi: 10.1016/j.jde.2004.02.004.
|